ON ITERATES OF ¢-ANALOUGE BERNSTEIN
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ABSTRACT. In this article, we derive the convergence of succes-
sive iterations for certain nonlinear operators on complete normed
linear space. As a consequence of our result we investigate the
convergence of iterates for the Lupas g-analouge Bernstein opera-
tors on C[0,1]. Our theorem indeed generalize the Kelisky-Rivlin
result about the convergence of iterates for the Bernstein operator.
The convergence of successive iterations for certain uniformly local
nonlinear operator is also derived.

1. INTRODUCTION

The well-known Bernstein operator B,, (for n > 1) on the space
C'10, 1] (the collection of all continuous real-valued mappings on [0, 1])
is defined by

(Bof)(z) = kzi% f (g) (Z) 2(1—2)"* for f € C[0,1] and z € [0, 1].

The operator has important contribution in approximation theory as
well as it has a wide range of applications in numerical analysis, differ-
ential equation and probability theory. Kelisky and Rivlin [6] in 1967
first scrutinized the convergence of iterates of this operator through
linear algebra. In fact, they established that for any f € C0,1] and
a fixed n > 1, lim; oo (BLf)(z) = (1 — z) f(0) + 2 f(1) where z lies in
[0,1]. Later Rus [12] proved this result in a very simplified manner, in
the perspective of fixed point theory.

The quick improvement of g-calculus has brought to the new ex-
tension of the Bernstein operator incorporating with g-integers. The
notion of g-analouge Bernstein operator L, , (n € N and ¢ > 0) on the
domain C|0, 1] was first initiated by Lupag [8] in the year 1987. For an
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These are linear operators and the operators L, , is nothing but the
Bernstein operators [6] for ¢ = 1. It is worth to note that these opera-
tors give rational functions instead of polynomials for ¢ # 1. In 2008,
Agratini [1] first discussed the convergence of iterates of g-analouge
Bernstein operator over C[0, 1]. For more papers in this direction, one
can refer to [1, 7, 9, 11].

In 2008, Jachymski [5] derived the below stated result for ensuring
the convergence of successive approximation for certain linear operator
on a complete normed linear space through the language of fixed point
theory.

bn,i(Q7 .T) =

Theorem 1.1. [5] Assume that Py is a closed subspace of a complete
normed linear space P and T : P — P s a linear operator in order
that |T|g,|| < 1. Then for p € P, {lim, ,o. T"p} = (p+ Po) N {p* €
P:Tp = p} if (I - T)(P) C P,

As a consequence of this result, the author derived the Kelisky-Rivlin
theorem for Bernstein operator. In 2014, Sultana and Vetrivel [13,
Theorem 6] generalized aforementioned Jachymski’s result for some
nonlinear operator T'. They also studied the convergence of successive
iterations of nonlinear Bernstein type operator.

In this manuscript, we study the convergence of iterates of cer-
tain class of nonlinear operators over a complete normed linear space
through the concept of fixed point theory. In particular, our result is
an extension of the preceding Theorem 1.1 due to Jachymski [5]. As an
implementation of our theorem, we investigate the convergence of it-
erates for Lupag g-analouge Bernstein operator over the space C[0, 1].
Moreover, this article deals with the convergence of iterates for uni-
formly local nonlinear operator on a normed linear space.

2. NOTATIONS AND DEFINITIONS

In connection with g-calculus, we now recall the subsequent defini-
tions and symbols from [11] which will be used in Section 4. For any
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q¢ > 0 and n € {0} UN, the g-fractional [11] identified by [n],! is the
following

n

)yt =[]lil, (for n>1), 0], = 1,
i=1
in which [i], = Y25 ¢* for i > 1 and [0], = 0. Moreover, for 0 < i < n,
we define the Gaussian coefficients as below

It can be noted that the Gaussian coefficients are the ordinary binomial
coefficients for ¢ = 1.

To the end of this article, we indicate by ¥ the set consisting of all
upper semi-continuous map ¢ : [0, 00) — [0, 0o0) satisfying ¥ (s) < s for
each positive s. We recall the subsequent result due to Jachymsky [4,
Lemma 1], that will be used in the sequel.

Lemma 2.1. [4] For any ¢ € VU, we have a continuous non-decreasing
map ¢ : [0,00) — [0, 00) meeting ¥(s) < ¢(s) < s for s > 0.

3. CONVERGENCE OF ITERATES FOR NONLINEAR OPERATORS

We commence this section with the upcoming result, which ensures
the convergence of successive approximation for certain class of non-
linear operators on Banach space. From this result, the convergence
of iterates for Lupag ¢g-analouge of the Bernstein operator due to O.
Agratini [1] has been established.

Theorem 3.1. Assume Py is a closed subspace of a complete normed
space (P/||.||). Let T : P — P satisfy (I — T)(P) C Py and for
p,q € P withp—q€ PR,

31 Tp—Tll < 9(lp—dll) whencver € 0.
Then for each p in P, {lim, o, T"p} = (p+Fo)N{p* € P : T(p*) = p*}.

Proof. Choose an element p € P. As (I — T)(P) C Py, it occurs for
every n € N that T"p — T""'p € Py. Now, for all n > 1 we get

32)  [Tp—=T"'p| < (T 'p =T p|) < |T" 'p—T"p||.

Hence it appears that {d,}, = {||T"p—T""'p||},, is monotone decreas-
ing. Thus lim,, ,+ d,, = a exists where a > 0. If possible, let us suppose
that a > 0. We see from (3.2) with the help of upper semi-continuity
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of 4 that

a <limsupt(d,—1) < (a)

dn_1~>a

< a, [Since ¥(s) < s, Vs > 0]

which is not true. Thus, lim d, = 0.
n—oo

Since ¢ € U, according to Lemma 2.1 we have a continuous strictly
increasing map ¢ on [0, c0) satisfying

(3.3) W(s) < p(s) <s forany s € (0,00).

On the account of ||T™p — T™"!p|| — 0 whenever n approaches to oo,
thus by choosing 6 =& — ¢(g) > 0, we see that

IT"p =T 'pll <e—¢le) Yn>M
for some M € N. Now, for all n > M, it yields

1T —T"2pl| < ||T"p =T 'p|| + | T p — T"2p|
< e—¢e) +o(|T"p =T pl)
< e—oe) +o(ITp =T pll)  [By (3.3)]
< e—¢(e) + ¢(e) =e. [ ¢ is increasing]

Hence it can be shown in a similar way that | T"p—T""p|| < ¢ for every
k € Nand n > M. Thus {T"p}, is Cauchy and hence lim, .., T"p
exists. Suppose lim,, ., T"p = p* for some p* € P.

As Py is closed and T"p — T p € By where n > 1, it appears that
T"p — p* € P, for each n. Now for any n > 1,

ITp* = p*|| < |[Tp" =T p|| +|T""p = p7|

< (llp" = Tpl)) + 1T p = p7||

< Al =Tl + T p = 7.

Taking limit n — oo, it appears Tp* = p*. Hence lim,, ., T"p € {p* €
P:Tp*=p*}.

Since (I —T)P C P, and F, is closed, it appears that lim,, ., T"p €
(p+ Py). Hence, lim,, oo T"p € (p+ Py) N {p* € P: T(p*) = p*}. Let
21,290 € (p+ Po) N{p* € P:T(p*) = p*}. Then z; — 2, € Py. Hence
and by equation (3.1), we have

| T21 — Tzl| <Y(||z1 — 22]]) < ||21 — 22|| [As ¥(s) <s, Vs> 0]

Therefore we get z; = z5. Hence proved.
O
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The renowned Banach contraction principle was extended by Edel-
stein [3] in 1961 for uniformly local contraction [3] over a complete
metric space. Later Nadler [10] investigated the fixed points for the
set-valued uniformly local contraction. Few more results in this direc-
tion can be found in [5, 13]. In the succeeding theorem, we investigate
the convergence of successive approximation for uniformly local non-
linear operators over a complete normed linear space.

Theorem 3.2. Let (P,||.||) be a complete normed linear space and
T : P — P in order that for each p,q € P having ||p — q|| < r(r > 0),

(3.4) ITp = Tqll < ¥([lp — qll) where ¢ € V.
Then for each p lies in P, {lim, ., T"p} = {p* € P : Tp* = p*}.

Proof. Let p € P be arbitrary. For given r > 0, we can find a finite
sequence (y3)N, in order that y) = p, yY = Tp and |lys~ ' —vi| < r for
eachi=1,2,---,N.

For every i, we now construct a sequence {y’, }neny where y', = T(y!,_;)
for n > 1. As [lyg " — gl < r and T satisfies (3.4), it appears that
lyi™t — 4l < 7 for any 1 < i < N. It can be shown in a similar
pattern that ||y’~! — ¢y || < r for each n > 1. Clearly, y° = T"p and
yN =T p. Now for each 1 <i < N and n > 1,

it = yill < w(llyi — voall < llyah — vi_y .

Hence it occurs that for each 4, {d¢}, = {|lv:"! — |/}, is monotone
decreasing. By following the same proof line of the Theorem 3.1, it
happens that lim d;, = 0, forevery:=1,2,--- , N. Now for any n > 1,

n—oo
IT"p =T 'pll = |lyo— |l
< 2 —yhll + s — g2l A+ =y
di+d2+ -4 dY.

Hence we get that lim,, o ||7"p — T""p|| = 0.
Since 1 € ¥, according to Lemma 2.1 we have a continuous strictly
increasing map ¢ on [0, c0) satisfying

P(s) < P(s) <s forany s € (0,00).

Let € > 0 be arbitrary. On the account of [|T"p — T""!p|| — 0, then
for 0 < 0 < min{r, e}, we obtain M € N in order that,

|T"p — T p|| < § — ¢(9), for every n > M.
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Clearly, ||T™p — T""1p|| < 6 < r. Thus for every n > M, it yields
IT"p = T"pl| < |[T"p = T""'pl| + | T 'p — T p||
< §—=0(0) +o(IT"p — T"'p|))
< 0—0¢(0)+9(0) =0 <e.
By following the same methodology, for each £k > 1 and n > M, we
conclude that ||T"p — T""*p|| < e. Thus {T™p}, becomes a Cauchy
sequence in P, hence T"p — p* for some p* € P.

As T"p — p*, then we obtain N; € N satisfying [|T"p — p*|| < r for
every n > N;. Now for n > Ny,

ITp* = p| < ITp" =T 'pl| + | T""'p — p*|

Yl = Tpl)) + 1T p = p7|

lp™ = T"p|| + 1T p = |-

Taking limit n — oo, we have T'p* = p* and hence lim,,_,,, T"p € {p* €
P : Tp* = p*}. Now we shall demonstrate that the collection of fixed

points of the operator T' is nothing but a singleton set.

Suppose T(a) = a and T'(b) = b for some a,b € P. Consequently,
we have (z;)L, in P where zy = a, z;, = b and ||z, — z;|] < r for
1 <4 < L. Consequently (3.4) leads to ||T"z;—1 — T"x;|| < r for each

1 and n > 1. Thus for every 1 = 1,2,--- | L and n > 1 we obtain,
HT”.ZL'l;l — TniL'ZH < w(HTnflxi,l — TniliL'ZH) < HTniliL'ifl — Tnill'iH.

IN A

Then as in the first part of the proof, we can show that for every i, the
sequence s = ||T"x;—y — T™z;|| is convergent and lim,,_, s} = s; = 0.

L L
la = bl = |T"a = T"0|| < Y IT"wiy = T |l = ) 57
i=1 =1

Letting n — oo, we conclude that a = b. Hence proved. O

In 1969, Boyd and Wong [2] generalized the Banach contraction prin-
ciple by using nonlinear contraction map. The authors [2] established
that for a complete metric space (P, d), there is a unique fixed point for
themap T : P — Pifforall p,q € P, d(T(p),T(q)) < ¥(d(p,q)) where
1 € W. An extension of this result for uniformly local nonlinear map
on r-chainable metric space can be established by following the same
proof line of the Theorem 3.2. The result is described in the following
manner.

Theorem 3.3. Assume (P,d) is r-chainable (where r > 0), that is, for
any p,q € P, there is sequence (yi)fio C P satisfying y° = p, y" = ¢
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and d(y',y"*t) < r where i = 0,--- ,N — 1. Suppose T : P — P is
satisfying

(3.5)  d(T(p),T(q)) <¥(d(p,q), Vp,qe€ P withd(p,q) <r,

where 1 € W. Then for each p in P, {lim, ., T"p} = {p* € P : Tp* =
p*} if P is complete.

It is worth to note that any mapping which satisfies the nonlinear
contractive condition due to Boyd-Wong [2] fulfils (3.5), whereas the
converse statement may not be true and the underneath example illus-
trates that.

Example 3.4. Suppose P = (—o0, —1]U[1, c0) having standard metric
and a map T on P is as follows

1
Tp)=5p+1)  forp=1

1
= §(p —1) otherwise.

Consider 7 = 1, then we observe that for every p, ¢ € P with d(p, q) < 1,
it appears d(T'p,Tq) < ¥ (d(p,q)), where 1 defined on [0, c0) by

W(s) =s/2 for 0 < s < 2;
=(s+1)/2 otherwise.

Obviously, we can see that ¢ € W. Therefore T is a uniformly local
nonlinear operator. However, for p =1 and ¢ = —1,

d(T(1), T(=1)) = 2 = d(1, —1) > @(d(p, q)),

for any map ¢ € W. This indicates that the map 7" is not a nonlinear
contraction however it is a uniformly local nonlinear operator.

4. CONVERGENCE OF ITERATES FOR LUPAS ¢-ANALOUGE OF THE
BERNSTEIN OPERATOR

As an application of the above mention Theorem 3.1, we derive the
convergence of iterates of Lupag g-analouge of the Bernstein operator
L,,on C[0,1].

Corollary 4.1. Let L,, (¢ > 0) be an operator as defined in (1.1).
Then, we have for any f € C[0,1] andn > 1,

lim (L, f)(@) = J(0) + [f() = f(O)]e  fora € [0,1]
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Proof. Let us take a Banach space P as C[0, 1] having the supremum
norm. Let Py C P consist of all f € P which takes value 0 at x =0, 1.
Take two distinct elements o and § in P where o — 3 € Fy. Since
(@ —3)(0) =0 and (a — 3)(1) = 0, it occurs for any x € [0,1] that

| Lngr() = LngB(@)| < gbn:*q’x) (@=F) (%)‘

S [1 - bn,n(Q7 ZL’) - bn,O(Qa :L‘)] ||(Oé - B)H

Let us represent g, (z) = ¢""V/2z" +(1—2)" and h,(z) = ng_ol(l -

x + ¢°x). For n > 2, the minimum value of g,(z) over [0, 1] occurs at
z = (1+¢"*)7" and its value is (¢"/%/(1+ q”/z))nfl. For n = 1, the
minimum value is 1. On the other hand, it is simple to visualize that
maxX,eo,1] hn () < max{l, q("_l)z}, for any ¢ > 0. Hence we can write
that

gn() qn/2 " 1
42 bnn 5 bn 5 - Z 2 .
( ) ) (q .73) + 70(61 l‘) hn(l‘) (1 + qn/2 maX{q(n—l) ’1}

n—1

(4.1)

q"/? 1
14qn/2 max{l,q("*lﬂ}
It follows from (4.1) and (4.2) that || L, qa— Ly, ,0|| < ¥(||a—p]|), where
Y(s) = (1 — any)s, for each s > 0. Evidently, ©» € U and hence L,
meets the condition (3.1) of Theorem 3.1.

Let us take f in P. Now, f(0)— L, 4(f(0)) = [f(0)— f(0)]bn0(q,0) =
0 and f(1) — L, 4(f(1)) = [f(1) — f(1)]bno(g,1) = 0. Hence (I —

L, ,)(P) C Fy. According to Theorem 3.1, { lim L7 qf} =(f+P)N
Jj—00 ’

Fix L, , for any f € C[0,1]. We observe ey(z) = = and e;(x) =1 —x

are fixed points of L, ,. This implies that ex(z) = f(0)(1—z)+ f(1)z €

Fiz L, ,. Moreover, it appears ey € f+ P, and thus (f+Fy)NFix L, , =
{ez}. Hence proved. O

Let us set a,, 4 = and we see that 0 < a,, < 1.
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