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Abstract. In this article, we derive the convergence of succes-
sive iterations for certain nonlinear operators on complete normed
linear space. As a consequence of our result we investigate the
convergence of iterates for the Lupaş q-analouge Bernstein opera-
tors on C[0, 1]. Our theorem indeed generalize the Kelisky-Rivlin
result about the convergence of iterates for the Bernstein operator.
The convergence of successive iterations for certain uniformly local
nonlinear operator is also derived.

1. Introduction

The well-known Bernstein operator Bn (for n ≥ 1) on the space
C[0, 1] (the collection of all continuous real-valued mappings on [0, 1])
is defined by

(Bnf)(x) =
n∑

k=0

f

(
k

n

)(
n

k

)
xk(1− x)n−k for f ∈ C[0, 1] and x ∈ [0, 1].

The operator has important contribution in approximation theory as
well as it has a wide range of applications in numerical analysis, differ-
ential equation and probability theory. Kelisky and Rivlin [6] in 1967
first scrutinized the convergence of iterates of this operator through
linear algebra. In fact, they established that for any f ∈ C[0, 1] and
a fixed n ≥ 1, limj→∞(Bj

nf)(x) = (1 − x)f(0) + xf(1) where x lies in
[0, 1]. Later Rus [12] proved this result in a very simplified manner, in
the perspective of fixed point theory.

The quick improvement of q-calculus has brought to the new ex-
tension of the Bernstein operator incorporating with q-integers. The
notion of q-analouge Bernstein operator Ln,q (n ∈ N and q > 0) on the
domain C[0, 1] was first initiated by Lupaş [8] in the year 1987. For an
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arbitrary f in the space,

(1.1) Ln,q(f(x)) =
n∑

i=0

f

(
[i]q
[n]q

)
bn,i(q, x) for x ∈ [0, 1],

in which for each i,

bn,i(q, x) =

[
n
i

]
q

q
i(i−1)

2 xi(1− x)n−i∏n−1
j=0{1− x+ qjx}

.

These are linear operators and the operators Ln,q is nothing but the
Bernstein operators [6] for q = 1. It is worth to note that these opera-
tors give rational functions instead of polynomials for q 6= 1. In 2008,
Agratini [1] first discussed the convergence of iterates of q-analouge
Bernstein operator over C[0, 1]. For more papers in this direction, one
can refer to [1, 7, 9, 11].

In 2008, Jachymski [5] derived the below stated result for ensuring
the convergence of successive approximation for certain linear operator
on a complete normed linear space through the language of fixed point
theory.

Theorem 1.1. [5] Assume that P0 is a closed subspace of a complete
normed linear space P and T : P → P is a linear operator in order
that ‖T |P0‖ < 1. Then for p ∈ P , {limn→∞ T

np} = (p + P0) ∩ {p∗ ∈
P : Tp∗ = p∗} if (I − T )(P ) ⊆ P0.

As a consequence of this result, the author derived the Kelisky-Rivlin
theorem for Bernstein operator. In 2014, Sultana and Vetrivel [13,
Theorem 6] generalized aforementioned Jachymski’s result for some
nonlinear operator T . They also studied the convergence of successive
iterations of nonlinear Bernstein type operator.

In this manuscript, we study the convergence of iterates of cer-
tain class of nonlinear operators over a complete normed linear space
through the concept of fixed point theory. In particular, our result is
an extension of the preceding Theorem 1.1 due to Jachymski [5]. As an
implementation of our theorem, we investigate the convergence of it-
erates for Lupaş q-analouge Bernstein operator over the space C[0, 1].
Moreover, this article deals with the convergence of iterates for uni-
formly local nonlinear operator on a normed linear space.

2. Notations and Definitions

In connection with q-calculus, we now recall the subsequent defini-
tions and symbols from [11] which will be used in Section 4. For any
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q > 0 and n ∈ {0} ∪ N, the q-fractional [11] identified by [n]q! is the
following

[n]q! =
n∏

i=1

[i]q (for n ≥ 1), [0]q! = 1,

in which [i]q =
∑i−1

k=0 q
k for i ≥ 1 and [0]q = 0. Moreover, for 0 ≤ i ≤ n,

we define the Gaussian coefficients as below[
n
i

]
q

=
[n]q!

[n− i]q![i]q!
.

It can be noted that the Gaussian coefficients are the ordinary binomial
coefficients for q = 1.

To the end of this article, we indicate by Ψ the set consisting of all
upper semi-continuous map ψ : [0,∞)→ [0,∞) satisfying ψ(s) < s for
each positive s. We recall the subsequent result due to Jachymsky [4,
Lemma 1], that will be used in the sequel.

Lemma 2.1. [4] For any ψ ∈ Ψ, we have a continuous non-decreasing
map φ : [0,∞)→ [0,∞) meeting ψ(s) ≤ φ(s) < s for s > 0.

3. Convergence of iterates for nonlinear operators

We commence this section with the upcoming result, which ensures
the convergence of successive approximation for certain class of non-
linear operators on Banach space. From this result, the convergence
of iterates for Lupaş q-analouge of the Bernstein operator due to O.
Agratini [1] has been established.

Theorem 3.1. Assume P0 is a closed subspace of a complete normed
space (P, ||.||). Let T : P → P satisfy (I − T )(P ) ⊆ P0 and for
p, q ∈ P with p− q ∈ P0,

(3.1) ||Tp− Tq|| ≤ ψ(||p− q||) whenever ψ ∈ Ψ.

Then for each p in P , {limn→∞ T
np} = (p+P0)∩{p∗ ∈ P : T (p∗) = p∗}.

Proof. Choose an element p ∈ P . As (I − T )(P ) ⊆ P0, it occurs for
every n ∈ N that T np− T n+1p ∈ P0. Now, for all n ≥ 1 we get

(3.2) ‖T np− T n+1p‖ ≤ ψ(‖T n−1p− T np‖) < ‖T n−1p− T np‖.

Hence it appears that {dn}n = {‖T np−T n+1p‖}n is monotone decreas-
ing. Thus limn→∞ dn = a exists where a ≥ 0. If possible, let us suppose
that a > 0. We see from (3.2) with the help of upper semi-continuity



4 P. MAITI AND A. SULTANA

of ψ that

a ≤ lim sup
dn−1→a

ψ(dn−1) ≤ ψ(a)

< a, [Since ψ(s) < s, ∀ s > 0]

which is not true. Thus, lim
n→∞

dn = 0.

Since ψ ∈ Ψ, according to Lemma 2.1 we have a continuous strictly
increasing map φ on [0,∞) satisfying

(3.3) ψ(s) ≤ φ(s) < s for any s ∈ (0,∞).

On the account of ‖T np − T n+1p‖ → 0 whenever n approaches to ∞,
thus by choosing δ = ε− φ(ε) > 0, we see that

‖T np− T n+1p‖ < ε− φ(ε) ∀n ≥M

for some M ∈ N. Now, for all n ≥M , it yields

‖T np− T n+2p‖ ≤ ‖T np− T n+1p‖+ ‖T n+1p− T n+2p‖
≤ ε− φ(ε) + ψ(‖T np− T n+1p‖)
≤ ε− φ(ε) + φ(‖T np− T n+1p‖) [By (3.3)]

< ε− φ(ε) + φ(ε) = ε. [∵ φ is increasing]

Hence it can be shown in a similar way that ‖T np−T n+kp‖ < ε for every
k ∈ N and n ≥ M . Thus {T np}n is Cauchy and hence limn→∞ T

np
exists. Suppose limn→∞ T

np = p∗ for some p∗ ∈ P .
As P0 is closed and T np− T n+1p ∈ P0 where n ≥ 1, it appears that

T np− p∗ ∈ P0 for each n. Now for any n ≥ 1,

‖Tp∗ − p∗‖ ≤ ‖Tp∗ − T n+1p‖+ ‖T n+1p− p∗‖
≤ ψ(‖p∗ − T np‖) + ‖T n+1p− p∗‖
≤ ‖p∗ − T np‖+ ‖T n+1p− p∗‖.

Taking limit n→∞, it appears Tp∗ = p∗. Hence limn→∞ T
np ∈ {p∗ ∈

P : Tp∗ = p∗}.
Since (I −T )P ⊆ P0 and P0 is closed, it appears that limn→∞ T

np ∈
(p + P0). Hence, limn→∞ T

np ∈ (p + P0) ∩ {p∗ ∈ P : T (p∗) = p∗}. Let
z1, z2 ∈ (p + P0) ∩ {p∗ ∈ P : T (p∗) = p∗}. Then z1 − z2 ∈ P0. Hence
and by equation (3.1), we have

||Tz1 − Tz2|| ≤ ψ(||z1 − z2||) < ||z1 − z2|| [As ψ(s) < s, ∀ s > 0].

Therefore we get z1 = z2. Hence proved.
�
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The renowned Banach contraction principle was extended by Edel-
stein [3] in 1961 for uniformly local contraction [3] over a complete
metric space. Later Nadler [10] investigated the fixed points for the
set-valued uniformly local contraction. Few more results in this direc-
tion can be found in [5, 13]. In the succeeding theorem, we investigate
the convergence of successive approximation for uniformly local non-
linear operators over a complete normed linear space.

Theorem 3.2. Let (P, ‖.‖) be a complete normed linear space and
T : P → P in order that for each p, q ∈ P having ‖p− q‖ < r (r > 0),

(3.4) ‖Tp− Tq‖ ≤ ψ(‖p− q‖) where ψ ∈ Ψ.

Then for each p lies in P , {limn→∞ T
np} = {p∗ ∈ P : Tp∗ = p∗}.

Proof. Let p ∈ P be arbitrary. For given r > 0, we can find a finite
sequence (yi0)

N
i=0 in order that y00 = p, yN0 = Tp and ‖yi−10 − yi0‖ < r for

each i = 1, 2, · · · , N .
For every i, we now construct a sequence {yin}n∈N where yin = T (yin−1)

for n ≥ 1. As ‖yi−10 − yi0‖ < r and T satisfies (3.4), it appears that
‖yi−11 − yi1‖ < r for any 1 ≤ i ≤ N . It can be shown in a similar
pattern that ‖yi−1n − yin‖ < r for each n ≥ 1. Clearly, y0n = T np and
yNn = T n+1p. Now for each 1 ≤ i ≤ N and n ≥ 1,

‖yi−1n − yin‖ ≤ ψ(‖yi−1n−1 − yin−1‖ < ‖yi−1n−1 − yin−1‖.

Hence it occurs that for each i, {din}n = {‖yi−1n − yin‖}n is monotone
decreasing. By following the same proof line of the Theorem 3.1, it
happens that lim

n→∞
din = 0, for every i = 1, 2, · · · , N . Now for any n ≥ 1,

‖T np− T n+1p‖ = ‖y0n − yNn ‖
≤ ‖y0n − y1n‖+ ‖y1n − y2n‖+ · · ·+ ‖yN−1n − yNn ‖
= d1n + d2n + · · ·+ dNn .

Hence we get that limn→∞ ‖T np− T n+1p‖ = 0.
Since ψ ∈ Ψ, according to Lemma 2.1 we have a continuous strictly

increasing map φ on [0,∞) satisfying

ψ(s) ≤ φ(s) < s for any s ∈ (0,∞).

Let ε > 0 be arbitrary. On the account of ‖T np − T n+1p‖ → 0, then
for 0 < δ < min{r, ε}, we obtain M ∈ N in order that,

‖T np− T n+1p‖ < δ − φ(δ), for every n ≥M.
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Clearly, ‖T np− T n+1p‖ < δ < r. Thus for every n ≥M , it yields

‖T np− T n+2p‖ ≤ ‖T np− T n+1p‖+ ‖T n+1p− T n+2p‖
< δ − φ(δ) + φ(‖T np− T n+1p‖)
< δ − φ(δ) + φ(δ) = δ < ε.

By following the same methodology, for each k ≥ 1 and n ≥ M , we
conclude that ‖T np − T n+kp‖ < ε. Thus {T np}n becomes a Cauchy
sequence in P , hence T np→ p∗ for some p∗ ∈ P .

As T np→ p∗, then we obtain N1 ∈ N satisfying ‖T np− p∗‖ < r for
every n ≥ N1. Now for n ≥ N1,

‖Tp∗ − p∗‖ ≤ ‖Tp∗ − T n+1p‖+ ‖T n+1p− p∗‖
≤ ψ(‖p∗ − T np‖) + ‖T n+1p− p∗‖
≤ ‖p∗ − T np‖+ ‖T n+1p− p∗‖.

Taking limit n→∞, we have Tp∗ = p∗ and hence limn→∞ T
np ∈ {p∗ ∈

P : Tp∗ = p∗}. Now we shall demonstrate that the collection of fixed
points of the operator T is nothing but a singleton set.

Suppose T (a) = a and T (b) = b for some a, b ∈ P . Consequently,
we have (xi)

L
i=0 in P where x0 = a, xL = b and ‖xi−1 − xi‖ < r for

1 ≤ i ≤ L. Consequently (3.4) leads to ‖T nxi−1 − T nxi‖ < r for each
i and n ≥ 1. Thus for every i = 1, 2, · · · , L and n ≥ 1 we obtain,

‖T nxi−1 − T nxi‖ ≤ ψ
(
‖T n−1xi−1 − T n−1xi‖

)
< ‖T n−1xi−1 − T n−1xi‖.

Then as in the first part of the proof, we can show that for every i, the
sequence sni = ‖T nxi−1 − T nxi‖ is convergent and limn→∞ s

n
i = si = 0.

‖a− b‖ = ‖T na− T nb‖ ≤
L∑
i=1

‖T nxi−1 − T nxi‖ =
L∑
i=1

sni .

Letting n→∞, we conclude that a = b. Hence proved. �

In 1969, Boyd and Wong [2] generalized the Banach contraction prin-
ciple by using nonlinear contraction map. The authors [2] established
that for a complete metric space (P, d), there is a unique fixed point for
the map T : P → P if for all p, q ∈ P , d(T (p), T (q)) ≤ ψ(d(p, q)) where
ψ ∈ Ψ. An extension of this result for uniformly local nonlinear map
on r-chainable metric space can be established by following the same
proof line of the Theorem 3.2. The result is described in the following
manner.

Theorem 3.3. Assume (P, d) is r-chainable (where r > 0), that is, for
any p, q ∈ P , there is sequence (yi)Ni=0 ⊆ P satisfying y0 = p, yN = q
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and d(yi, yi+1) < r where i = 0, · · · , N − 1. Suppose T : P → P is
satisfying

(3.5) d(T (p), T (q)) ≤ ψ(d(p, q)), ∀ p, q ∈ P with d(p, q) < r,

where ψ ∈ Ψ. Then for each p in P , {limn→∞ T
np} = {p∗ ∈ P : Tp∗ =

p∗} if P is complete.

It is worth to note that any mapping which satisfies the nonlinear
contractive condition due to Boyd-Wong [2] fulfils (3.5), whereas the
converse statement may not be true and the underneath example illus-
trates that.

Example 3.4. Suppose P = (−∞,−1]∪[1,∞) having standard metric
and a map T on P is as follows

T (p) =
1

2
(p+ 1) for p ≥ 1;

=
1

2
(p− 1) otherwise.

Consider r = 1, then we observe that for every p, q ∈ P with d(p, q) < 1,
it appears d(Tp, Tq) ≤ ψ(d(p, q)), where ψ defined on [0,∞) by

ψ(s) = s/2 for 0 ≤ s < 2;

= (s+ 1)/2 otherwise.

Obviously, we can see that ψ ∈ Ψ. Therefore T is a uniformly local
nonlinear operator. However, for p = 1 and q = −1,

d(T (1), T (−1)) = 2 = d(1,−1) > ϕ(d(p, q)),

for any map ϕ ∈ Ψ. This indicates that the map T is not a nonlinear
contraction however it is a uniformly local nonlinear operator.

4. Convergence of Iterates for Lupaş q-analouge of the
Bernstein Operator

As an application of the above mention Theorem 3.1, we derive the
convergence of iterates of Lupaş q-analouge of the Bernstein operator
Ln,q on C[0, 1].

Corollary 4.1. Let Ln,q (q > 0) be an operator as defined in (1.1).
Then, we have for any f ∈ C[0, 1] and n ≥ 1,

lim
j→∞

(Lj
n,qf)(x) = f(0) + [f(1)− f(0)]x for x ∈ [0, 1].
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Proof. Let us take a Banach space P as C[0, 1] having the supremum
norm. Let P0 ⊆ P consist of all f ∈ P which takes value 0 at x = 0, 1.
Take two distinct elements α and β in P where α − β ∈ P0. Since
(α− β)(0) = 0 and (α− β)(1) = 0, it occurs for any x ∈ [0, 1] that

(4.1)

∣∣Ln,qα(x)− Ln,qβ(x)
∣∣ ≤ n−1∑

i=1

bn,i(q, x)

∣∣∣∣(α− β)

(
[i]q
[n]q

)∣∣∣∣
≤ [1− bn,n(q, x)− bn,0(q, x)] ||(α− β)||.

Let us represent gn(x) = qn(n−1)/2xn+(1−x)n and hn(x) =
∏n−1

s=0 (1−
x + qsx). For n ≥ 2, the minimum value of gn(x) over [0, 1] occurs at

x = (1 + qn/2)−1 and its value is
(
qn/2/(1 + qn/2)

)n−1
. For n = 1, the

minimum value is 1. On the other hand, it is simple to visualize that
maxx∈[0,1] hn(x) ≤ max{1, q(n−1)2}, for any q > 0. Hence we can write
that

(4.2) bn,n(q, x)+ bn,0(q, x) =
gn(x)

hn(x)
≥
(

qn/2

1 + qn/2

)n−1
1

max{q(n−1)2 , 1}
.

Let us set an,q =

(
qn/2

1+qn/2

)n−1
1

max{1,q(n−1)2}
and we see that 0 < an,q ≤ 1.

It follows from (4.1) and (4.2) that ||Ln,qα−Ln,qβ|| ≤ ψ(||α−β||), where
ψ(s) = (1 − an,q)s, for each s ≥ 0. Evidently, ψ ∈ Ψ and hence Ln,q

meets the condition (3.1) of Theorem 3.1.
Let us take f in P . Now, f(0)−Ln,q(f(0)) = [f(0)−f(0)]bn,0(q, 0) =

0 and f(1) − Ln,q(f(1)) = [f(1) − f(1)]bn,0(q, 1) = 0. Hence (I −

Ln,q)(P ) ⊆ P0. According to Theorem 3.1,

{
lim
j→∞

Lj
n,qf

}
= (f + P0) ∩

FixLn,q for any f ∈ C[0, 1]. We observe e0(x) = x and e1(x) = 1 − x
are fixed points of Ln,q. This implies that e2(x) = f(0)(1−x)+f(1)x ∈
FixLn,q. Moreover, it appears e2 ∈ f+P0 and thus (f+P0)∩FixLn,q =
{e2}. Hence proved. �

Acknowledgment

The first author is grateful to the Ministry of Human Resource De-
velopment (MHRD), India for financial assistance.

References

[1] O. Agratini, On certain q-analogues of the Bernstein operators, Carpathian J.
Math. 24 (2008), 281–286.

[2] D. W. Boyd and J. S. W. Wong, On nonlinear contractions, Proc. Amer. Math.
Soc. 20 (1969), 458–464.



ON ITERATES OF q-ANALOUGE BERNSTEIN OPERATOR 9

[3] M. Edelstein, An extension of Banach’s contraction principle, Proc. Amer.
Math. Soc. 12 (1961), 7–10.

[4] J. Jachymski, Equivalence of some contractivity properties over metrical struc-
tures, Proc. Amer. Math. Soc. 125 (1997), 2327–2335.

[5] J. Jachymski, The contraction principle for mappings on a metric space with
a graph, Proc. Amer. Math. Soc. 136 (2008), 1359–1373.

[6] R. P. Kelisky and T. J. Rivlin, Iterates of Bernstein polynomials, Pacific J.
Math. 21 (1967), 511–520.
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