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Sandwich Results for p–Valent Functions Involving
a Linear Operator

Rabha M. El-Ashwah∗and Teodor Bulboacă†

Abstract

Making use of the principle of subordination, in the present paper we obtain the sharp

subordination- and superordination-preserving properties of some convex combinations as-

sociated with a linear operator in the open unit disk. The sandwich-type theorem on the

space of normalized analytic functions for these operators is also given, together with a

few interesting special cases obtained for an appropriate choices of the parameters and the

corresponding functions.
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1 Introduction

Let denote by H(U) the space of all analytical functions in the unit disk U = {z ∈ C : |z| < 1}, and for

a ∈ C, n ∈ N∗, we denote

H[a,n] = { f ∈ H(U) : f (z) = a+anzn + . . .}.
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If f and F are analytic functions in U, we say that f is subordinate to F , written f (z)≺ F(z), if there

exists a Schwarz function w, which (by definition) is analytic in U, with w(0) = 0, and |w(z)|< 1 for all

z ∈ U, such that f (z) = F(w(z)), z ∈ U. Furthermore, if the function F is univalent in U, then we have

the equivalence

f (z)≺ F(z)⇔ f (0) = F(0) and f (U)⊂ F(U).

Letting ϕ : C3×U→C, h∈H(U) and q∈H[a,n], in [9] the authors determined conditions on ϕ such

that

h(z)≺ ϕ(p(z),zp′(z),z2 p′′(z);z) implies q(z)≺ p(z),

for all p functions that satisfy the above superordination. Moreover, they found sufficient conditions so

that the q function is the largest function with this property, called the best subordinant of this superor-

dination.

Using the principle of subordination, Miller et al. [10] investigated some subordination theorems

involving certain integral operators for analytic functions in U (see also [1, 11]). Moreover, Miller and

Mocanu [9] considered the differential superordinations as the dual concept of differential subordinations

(see also [2]).

If A(p), with p ∈ N, denotes the class of functions of the form

f (z) = apzp +
∞

∑
n=1

an+pzn+p, z ∈ U, ap 6= 0,

which are analytic and p–valent in U, Liu [5] defined the linear operator I s
p,b : A(p)→ A(p) by

I s
p,b f (z) = ap zp +

∞

∑
n=1

(
1+b

n+1+b

)s

an+p zn+p, z ∈ U, (1.1)

where all the powers are principal ones, and

b ∈ C\Z− = C\{−1,−2, . . .}, s ∈ C.
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It is easy to verify that

z(I s+1
p,b f (z))′ = [p− (1+b)]I s+1

p,b f (z)+(1+b)I s
p,b f (z), z ∈ U. (1.2)

We note that:

(i) I 0
p,b f (z) = f (z), f ∈ A(p);

(ii) I −1
p,p−1 f (z) = ap zp +

∞

∑
n=1

n+ p
p

an+p zn+p =
z f ′(z)

p
, f ∈ A(p);

(iii) I −1
1,0 f (z) = a1 z+

∞

∑
n=1

(n+1)an+1 zn+1 = z f ′(z), f ∈ A(1).

Let denote by Aτ(p), with p ∈ N and τ > 0, the class of functions f ∈ A(p) of the form

f (z) = apzp +
∞

∑
n=1

an+pzn+p, z ∈ U, where |ap| ≥ τ.

In the present paper we obtain some type of subordination and superordination preserving properties

for the linear operators I s
p,b defined by (1.1), and the corresponding sandwich-type theorem. Some

examples, obtained for an appropriate choices of the parameters and the corresponding functions, are

also given.

2 Preliminaries

To prove our main results, we will need the following definitions and lemmas presented in this section.

A function L(z; t) : U× [0,+∞)→C is called a subordination (or a Loewner) chain if L(·; t) is analytic

and univalent in U for all t ≥ 0, and L(z;s)≺ L(z; t) when 0≤ s≤ t.

The next well-known lemma gives a sufficient condition so that the L(z; t) function will be a subordi-

nation chain.

Lemma 2.1. [12, p. 159] Let L(z; t)= a1(t)z+a2(t)z2+. . . , with a1(t) 6= 0 for all t ≥ 0 and lim
t→+∞

|a1(t)|=

+∞. Suppose that L(·; t) is analytic in U for all t ≥ 0, L(z; ·) is continuously differentiable on [0,+∞) for
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all z ∈ U. If L(z; t) satisfy

Re
[

z
∂L/∂ z
∂L/∂ t

]
> 0, z ∈ U, t ≥ 0.

and

|L(z; t)| ≤ K0 |a1(t)| , |z|< r0 < 1, t ≥ 0

for some positive constants K0 and r0, then L(z; t) is a subordination chain.

We denote by K(α), α < 1, the class of convex functions of order α in the unit disk U, not necessarily

normalized, i.e.

K(α) =

{
f ∈ H(U) : f ′(0) 6= 0, Re

[
1+

z f ′′(z)
f ′(z)

]
> α, z ∈ U

}
.

In particular, the class K ≡ K(0) represents the class of convex (and univalent) functions in the unit disk

(not necessarily normalized).

Lemma 2.2. [6], [8, Theorem 2.3i, p. 35] Suppose that the function H : C2→ C satisfies the condition

ReH(is, t)≤ 0,

for all s, t ∈ R with t ≤−n(1+ s2)/2, where n is a positive integer. If the function p(z) = 1+ pnzn + . . .

is analytic in U and

ReH(p(z),zp′(z))> 0, z ∈ U,

then Re p(z)> 0, z ∈ U.

The next result deals with the solutions of the Briot–Bouquet differential equation (2.1), and more

general forms of the following lemma may be found in [7, Theorem 1].

Lemma 2.3. [7] Let β ,γ ∈ C with β 6= 0 and let h ∈ H(U), with h(0) = c. If Re [βh(z)+ γ]> 0, z ∈ U,

then the solution q of the differential equation

q(z)+
zq′(z)

βq(z)+ γ
= h(z), (2.1)
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with q(0) = c, is analytic in U and satisfies Re[βq(z)+γ]> 0, z∈U. Moreover, if c 6= 0, then the solution

is given by

q(z) = zγ [H(z)]βc
(

β

∫ z

0
[H(t)]βc tγ−1 d t

)−1

− γ

β
, (2.2)

where

H(z) = zexp
∫ z

0

h(t)− c
ct

d t. (2.3)

(All powers are principal ones).

Remark that in [8, Theorem 3.2d], the assumption Re [βh(z)+ γ]> 0, z ∈ U, of the above lemma was

replaced by a more general one, and it is also given the solution of (2.1) for c = 0.

As in [9], let denote by Q the set of functions f that are analytic and injective on U\E( f ), where

E( f ) =
{

ζ ∈ ∂U : lim
z→ζ

f (z) = ∞

}
,

and such that f ′(ζ ) 6= 0 for ζ ∈ ∂U\E( f ).

Lemma 2.4. [9, Theorem 7] Let q ∈ H[a,1], let χ : C2→ C and set χ(q(z),zq′(z)) ≡ h(z). If L(z; t) =

χ(q(z), tzq′(z)) is a subordination chain and p ∈ H[a,1]∩Q, then

h(z)≺ χ(p(z),zp′(z)) implies q(z)≺ p(z).

Furthermore, if χ(q(z),zq′(z)) = h(z) has a univalent solution q ∈Q, then q is the best subordinant.

Like in [6] and [8], let Ω ⊂ C, q ∈Q and n be a positive integer. The class of admissible functions

Ψn[Ω,q] is the class of those functions ψ : C3×U→ C that satisfy the admissibility condition

ψ(r,s, t;z) /∈Ω,

whenever r = q(ζ ), s = mζ q′(ζ ), Re
t
s
+1≥mRe

[
ζ q′′(ζ )
q′(ζ )

+1
]

, z ∈U, ζ ∈ ∂U\E(q) and m≥ n. This

class will be denoted by Ψn[Ω,q].
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We write Ψ[Ω,q]≡Ψ1[Ω,q]. For the special case when Ω 6=C is a simply connected domain and h is

a conformal mapping of U onto Ω, we use the notation Ψn[h,q]≡Ψn[Ω,q].

The following lemma is a key result in the theory of sharp differential subordinations:

Remark 2.1. If ψ : C2×U→ C, then the above defined admissibility condition reduces to

ψ(q(ζ ),mζ q′(ζ );z) /∈Ω,

when z ∈ U, ζ ∈ ∂U\E(q) and m≥ n.

Lemma 2.5. [6], [8] Let h be univalent in U and ψ : C3×U→C. Suppose that the differential equation

ψ(q(z),zq′(z),z2q′′(z);z) = h(z)

has a solution q, with q(0) = a, and one of the following conditions is satisfied:

(i) q ∈Q and ψ ∈Ψ[h,q]

(ii) q is univalent in U and ψ ∈Ψ[h,qρ ], for some ρ ∈ (0,1), where

qρ(z) = q(ρz), or

(iii) q is univalent in U and there exists ρ0 ∈ (0,1) such that ψ ∈Ψ[hρ ,qρ ]

for all ρ ∈ (ρ0,1), where hρ(z) = h(ρz) and qρ(z) = q(ρz).

If p(z) = a+a1z+ . . . ∈ H(U) and ψ(p(z),zp′(z),z2 p′′(z);z) ∈ H(U), then

ψ(p(z),zp′(z),z2 p′′(z);z)≺ h(z) implies p(z)≺ q(z)

and q is the best dominant.

3 Main results

Unless otherwise mentioned, we assume throughout this paper that b= b1+ib2 ∈C\Z−, with b1, b2 ∈R,

s ∈ C, p ∈ N, τ > 0, and all the powers are principal ones.

We begin by proving the following subordination theorem:
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Theorem 3.1. Let α < 1 and b ∈ C \Z−, with Reb > −α . For a given function g ∈ Aτ(p) of the form

g(z) = bpzp +
∞

∑
n=1

bn+pzn+p, z ∈ U, suppose that

Re
[

1+
zφ ′′(z)
φ ′(z)

]
>−δ , z ∈ U, (3.1)

where

φ(z) =
(1−α)I s

p,b g(z)+αI s+1
p,b g(z)

zp−1 , (3.2)

and

δ = δ (α;b) :=
(1−α)2 + |α +b|2−

√[
(1−α)2 + |α +b|2

]2
−4(1−α)2(α +Reb)2

4(1−α)(α +Reb)
. (3.3)

If f ∈ A(p) such that

(1−α)I s
p,b f (z)+αI s+1

p,b f (z)

zp−1 ≺
(1−α)I s

p,b g(z)+αI s+1
p,b g(z)

zp−1 ,

then

F(z) :=
I s+1

p,b f (z)

zp−1 ≺ G(z) :=
I s+1

p,b g(z)

zp−1 ,

and the function G is the best dominant.

Proof. If we denote

ϕ(z) =
(1−α)I s

p,b f (z)+αI s+1
p,b f (z)

zp−1

and

F(z) =
I s+1

p,b f (z)

zp−1 , G(z) =
I s+1

p,b g(z)

zp−1 , (3.4)

then we need to prove that ϕ(z) ≺ φ(z) implies F(z) ≺ G(z). Remark that the assumption ϕ(z) ≺ φ(z)

implies |ap| ≤ |bp|, that is
∣∣ f (p)(0)

∣∣≤ ∣∣g(p)(0)
∣∣.

Differentiating the second part of the relation (3.4), by using the identity (1.2) we have

I s
p,b g(z) =

1
1+b

[
zpG′(z)+bzp−1G(z)

]
,
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and replacing the left-hand side of the above relation in (3.2) we get

(1+b)φ(z) = (α +b)G(z)+(1−α)zG′(z), (3.5)

and by differentiating the above relation we get

φ
′(z) = G′(z)+

1−α

1+b
zG′′(z).

Now, let consider the differential equation

q(z)+
zq′(z)

q(z)+ α+b
1−α

= 1+
zφ ′′(z)
φ ′(z)

≡ h(z). (3.6)

It is easy to check that the values of δ given by (3.3) satisfies the inequality 0< δ ≤ 1
2

, whenever α < 1

and Reb >−α . Consequently, the assumption (3.1) implies that the function φ is close-to-convex, hence

univalent in the unit disk U. It follows that φ ′(z) 6= 0 for all z ∈ U, and thus h ∈ H(U).

From (3.1), using the assumptions α < 1 and b1 = Reb >−α , we have

Re
[

h(z)+
α +b
1−α

]
>−δ +

α +Reb
1−α

≥ 0, z ∈ U

and by using Lemma 2.3 we conclude that the differential equation (3.6) has a solution q ∈ H(U), with

q(0) = h(0) = 1 and

Re
[

q(z)+
α +b
1−α

]
> 0, z ∈ U.

On the other hand, according to the formulas (2.2) and (2.3), we deduce that the Briot-Bouquet differ-

ential equation (3.6) has the solution q ∈ H(U), with q(0) = 1, given by

q(z) =
z

α+b
1−α H(z)∫ z

0
H(t) t

α+b
1−α
−1 d t

− α +b
1−α

, where H(z) = zφ
′(z).

Now, by using (3.6), the above relations implies that

q(z) = 1+
zG′′(z)
G′(z)

,
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where q ∈ H(U) and q(0) = 1.

Now we will use Lemma 2.2 to prove that, under our assumption, the inequality

Req(z)> 0, z ∈ U, (3.7)

holds. Let us put

H(u,v) = u+
v

u+ α+b
1−α

+δ , (3.8)

where δ is given by (3.3). From the assumption (3.1), according to (3.6), we obtain

ReH(q(z),zq′(z))> 0, z ∈ U, (3.9)

and we proceed to show that ReH(is, t)≤ 0 for all s, t ∈ R, with t ≤−(1+ s2)/2.

From (3.8), using the assumptions α < 1 and b1 = Reb >−α , we have

ReH(is, t) = Re

(
is+

t
is+ α+b

1−α

+δ

)
=

t α+b1
1−α∣∣is+ α+b

1−α

∣∣2 +δ ≤ E(s)

−2
∣∣is+ α+b

1−α

∣∣2 ,
where

E(s) =
(

α +b1

1−α
−2δ

)
s2− 4b2δ

1−α
s−2δ

|α +b|2

(1−α)2 +
α +b1

1−α
,

and b2 = Imb. It is well-known that the second order polinomial function E(s) is nonnegative for all

s ∈ R, if and only if

∆≤ 0 and
α +b1

1−α
−2δ > 0, (3.10)

where ∆ is the discriminant of E(s), i.e.

∆ =−4(α +b1)

(1−α)2

{
4(α +b1)δ

2−
2
[
(1−α)2 + |α +b|2

]
1−α

δ +α +b1

}
.

We may easily check that the value of δ given by (3.3) is the greater one for which ∆ ≤ 0. Since this

value of δ satisfies the second part of the conditions (3.10), it follows that ReH(is, t)≤ 0 for all s, t ∈R,

with t ≤−(1+ s2)/2.
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Form (3.9), according to Lemma 2.2, we deduce that the inequality (3.7) holds, hence G ∈ K, that

is G is a convex (and univalent) function in the unit disk, hence the following well-known growth and

distortion sharp inequalities (see [3]) are true:

r
1+ r

≤ |G(z)| ≤ r
1− r

, if |z| ≤ r,

1
(1+ r)2 ≤ |G

′(z)| ≤ 1
(1− r)2 , if |z| ≤ r.

If we let

L(z; t) =
α +b
1+b

G(z)+
(1−α)(1+ t)

1+b
zG′(z), (3.11)

from (3.5) we have L(z;0) = φ(z). Denoting L(z; t) = a1(t)z+ . . . , then

a1(t) =
∂L(0; t)

∂ z
=

α +b+(1−α)(1+ t)
1+b

G′(0) =
α +b+(1−α)(1+ t)

1+b
bp,

hence lim
t→+∞

|a1(t)|=+∞, and because α < 1 and Reb >−α we obtain a1(t) 6= 0, ∀t ≥ 0.

From (3.11) we may easily deduce the equality

Re
[

z
∂L/∂ z
∂L/∂ t

]
= Re

[
α +b
1−α

+(1+ t)
(

1+
zG′′(z)
G′(z)

)]
=

α +Reb
1−α

+(1+ t)Req(z).

Using the inequality (3.7) together with the assumptions α < 1 and Reb >−α , the above relation yields

that

Re
[

z
∂L/∂ z
∂L/∂ t

]
> 0, ∀z ∈ U, ∀t ≥ 0.

Since g ∈ Aτ(p), from the definition (3.11), for all t ≥ 0 we have

|L(z; t)|
|a1(t)|

≤ |α +b| |G(z)|+ |1−α||1+ t| |zG′(z)|
|bp| |1+b+(1−α)t|

≤

|α +b| |G(z)|+ |1−α||1+ t| |zG′(z)|
τ |1+b+(1−α)t|

.(3.12)

Using the right-hand sides of these inequalities in (3.12), we deduce that

|L(z; t)|
|a1(t)|

≤ 1
τ

[
|α +b|
|1−α|

r
1− r

ϕ1(t)+
r

(1− r)2 ϕ2(t)
]
, |z| ≤ r, ∀t ≥ 0, (3.13)
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where

ϕ1(t) =
1∣∣t + 1+b
1−α

∣∣ and ϕ2(t) =
|t +1|∣∣t + 1+b

1−α

∣∣ .
Since Re 1+b

1−α
> 0 whenever Reb >−α and α < 1, it follows∣∣∣∣t + 1+b

1−α

∣∣∣∣≥ ∣∣∣∣ 1+b
1−α

∣∣∣∣ , ∀t ≥ 0,

hence

ϕ1(t)≤
∣∣∣∣1−α

1+b

∣∣∣∣ , t ≥ 0. (3.14)

Moreover, since Re 1+b
1−α

> 1 whenever Reb >−α and α < 1, we obtain

|t +1|∣∣t + 1+b
1−α

∣∣ < 1, ∀t ≥ 0,

hence

ϕ2(t)< 1, t ≥ 0. (3.15)

Using the inequalities (3.14) and (3.15), from (3.13) we deduce that

|L(z; t)|
|a1(t)|

<
1
τ

[
r

(1− r)2 +

∣∣∣∣α +b
1+b

∣∣∣∣ r
1− r

]
, |z| ≤ r, ∀t ≥ 0,

hence the second assumption of Lemma 2.1 holds, and according to this lemma we conclude that the

function L(z; t) is a subordination chain.

Now, by using Lemma 2.5, we will show that F(z)≺G(z). Without loss of generality, we can assume

that φ and G are analytic and univalent in U and G′(ζ ) 6= 0 for |ζ | = 1. If not, then we could replace

φ with φρ(z) = φ(ρz) and G with Gρ(z) = G(ρz), where ρ ∈ (0,1). These new functions will have the

desired properties and we would prove our result using part (iii) of Lemma 2.5.

With our above assumption, we will use part (i) of the Lemma 2.5. If we denote by ψ(G(z),zG′(z)) =

φ(z), we only need to show that ψ ∈Ψ[φ ,G], i.e. ψ is an admissible function. Because

ψ(G(ζ ),mζ G′(ζ )) =
α +b
1+b

G(z)+
(1−α)(1+ t)

1+b
zG′(z) = L(ζ ; t),
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where m = 1+ t, t ≥ 0, since L(z; t) is a subordination chain and φ(z) = L(z;0), it follows that

ψ(G(ζ ),mζ G′(ζ )) /∈ φ(U).

According to the Remark 2.1 we have ψ ∈ Ψ[φ ,G], and using Lemma 2.5 we obtain that F(z) ≺ G(z)

and, moreover, G is the best dominant.

Remark 3.1. Like we remarked in the proof of the theorem, it is easy to check that the values of δ given

by (3.3) satisfies the inequality 0 < δ ≤ 1
2

, whenever α < 1 and Reb >−α .

For the special case b = 0, s =−1 and p = 1, Theorem 3.1 reduces to:

Corollary 3.1. Let 0 < α < 1 and for a given function g ∈ Aτ(1) suppose that the inequality (3.1) holds,

where

φ(z) = (1−α)zg′(z)+αg(z), (3.16)

and

δ = δ (α;0) =
(1−α)2 +α2−

∣∣(1−α)2−α2
∣∣

4α(1−α)
=


α

2(1−α)
, if 0 < α ≤ 1/2,

1−α

2α
, if 1/2≤ α < 1.

(3.17)

If f ∈ A(1) such that

(1−α)z f ′(z)+α f (z)≺ (1−α)zg′(z)+αg(z),

then

f (z)≺ g(z),

and the function g is the best dominant.

Now we will prove a dual of Theorem 3.1, in the sense that the subordinations are replaced by super-

ordinations.
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Theorem 3.2. Let α < 1 and b ∈ C \Z−, with Reb > −α . For a given function g ∈ Aτ(p) of the form

g(z) = bpzp +
∞

∑
n=1

bn+pzn+p, z ∈ U, suppose that the function φ defined by (3.2) satisfies the condition

(3.1), with δ given by (3.3).

Let f ∈ A(p) such that
(1−α)I s

p,b f (z)+αI s+1
p,b f (z)

zp−1 is univalent in U and
I s+1

p,b f (z)

zp−1 ∈Q. Then,

(1−α)I s
p,b g(z)+αI s+1

p,b g(z)

zp−1 ≺
(1−α)I s

p,b f (z)+αI s+1
p,b f (z)

zp−1

implies

G(z) :=
I s+1

p,b g(z)

zp−1 ≺ F(z) :=
I s+1

p,b f (z)

zp−1 ,

and the function G is the best subordinant.

Proof. Denoting

ϕ(z) =
(1−α)I s

p,b f (z)+αI s+1
p,b f (z)

zp−1

and

F(z) =
I s+1

p,b f (z)

zp−1 , G(z) =
I s+1

p,b g(z)

zp−1 , (3.18)

then we need to prove that φ(z)≺ ϕ(z) implies G(z)≺ F(z). Like in the proof of the previous theorem,

we remark that the assumption φ(z)≺ ϕ(z) implies |bp| ≤ |ap|, that is
∣∣g(p)(0)

∣∣≤ ∣∣ f (p)(0)
∣∣.

If we differentiate the second part of the relation (3.18), using the identity (1.2) we obtain

I s
p,b g(z) =

1
1+b

[
zpG′(z)+bzp−1G(z)

]
.

Replacing the left-hand side of the above relation in (3.2) we have

φ(z) =
α +b
1+b

G(z)+
1−α

1+b
zG′(z). (3.19)

If we let q(z) = 1+
zG′′(z)
G′(z)

, like in the proof of Theorem 3.1 it follows that q∈H(U) and the inequality

(3.7) holds, i.e. Req(z)> 0 for all z ∈ U.
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Letting

L(z; t) =
α +b
1+b

G(z)+
(1−α)t

1+b
zG′(z), (3.20)

from (3.19) we have L(z;1) = φ(z). Thus, L(z; t) = a1(t)z+ . . . , and then

a1(t) =
∂L(0; t)

∂ z
=

α +b+(1−α)t
1+b

G′(0) =
α +b+(1−α)t

1+b
bp,

hence lim
t→+∞

|a1(t)|=+∞, and because α < 1 and Reb >−α we obtain a1(t) 6= 0, ∀t ≥ 0.

From (3.20), a simple computation shows that

Re
[

z
∂L/∂ z
∂L/∂ t

]
= Re

[
α +b
1−α

+ t
(

1+
zG′′(z)
G′(z)

)]
=

α +Reb
1−α

+ t Req(z).

Since we already mentioned that the inequality (3.7) holds, combining with the assumptions α < 1 and

Reb >−α , the above relation implies that

Re
[

z
∂L/∂ z
∂L/∂ t

]
> 0, ∀z ∈ U, ∀t ≥ 0.

Also, for all t ≥ 0 we have

|L(z; t)|
|a1(t)|

≤ |α +b| |G(z)|+ |1−α||t| |zG′(z)|
|bp| |α +b+(1−α)t|

. (3.21)

and from the right-hand sides of these inequalities in (3.12), since g ∈ Aτ(p) we obtain that

|L(z; t)|
|a1(t)|

≤ 1
τ

[
|α +b|
|1−α|

r
1− r

ϕ1(t)+
r

(1− r)2 ϕ2(t)
]
, |z| ≤ r, ∀t ≥ 0, (3.22)

where

ϕ1(t) =
1∣∣t + α+b
1−α

∣∣ and ϕ2(t) =
|t|∣∣t + α+b

1−α

∣∣ .
Since Re 1+b

1−α
> 0 for Reb >−α and α < 1, it follows∣∣∣∣t + α +b

1−α

∣∣∣∣≥ ∣∣∣∣α +b
1−α

∣∣∣∣ and |t|<
∣∣∣∣t + α +b

1−α

∣∣∣∣ , ∀t ≥ 0,

and thus

ϕ1(t)≤
∣∣∣∣1−α

α +b

∣∣∣∣ , ϕ2(t)< 1, t ≥ 0.
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Using the above inequalities together with (3.21) we deduce that

|L(z; t)|
|a1(t)|

<
1
τ

[
r

1− r
+

r
(1− r)2

]
, |z| ≤ r, ∀t ≥ 0,

hence the second assumption of Lemma 2.1 holds. Now, from this lemma we obtain that the function

L(z; t) is a subordination chain.

Using the fact that (3.7) holds, since G ∈ A, we have that G is convex (univalent) in U. Thus,

if we denote by χ(G(z),zG′(z)) = φ(z), then L(z; t) = χ(q(z), tzq′(z)), and the differential equation

χ(G(z),zG′(z)) = φ(z) has the univalent solution G.

According to Lemma 2.4, we conclude that φ(z)≺ ϕ(z) implies G(z)≺ F(z), and furthermore, since

G is a univalent solution of the differential equation χ(G(z),zG′(z)) = φ(z), it follows that it is the best

subordinant of the given differential superordination.

Taking b = 0, s =−1 and p = 1 in Theorem 3.2, we obtain the next special case:

Corollary 3.2. Let 0 < α < 1 and for a given function g ∈ Aτ(1) suppose that the function φ defined by

(3.16) satisfies the condition (3.1), with δ given by (3.17).

Let f ∈ A(1) such that (1−α)z f ′(z)+α f (z) is univalent in U and f ∈Q. Then,

(1−α)zg′(z)+αg(z)≺ (1−α)z f ′(z)+α f (z)

implies

g(z)≺ f (z),

and the function g is the best subordinant.

Combining the Theorem 3.2 with Theorem 3.1, we obtain the following sandwich-type theorem:

Theorem 3.3. Let α < 1 and b ∈ C \Z−, with Reb > −α . For the two given functions gk ∈ Aτk(p),

τk > 0 (k = 1,2), suppose that

Re
[

1+
zφ ′′k (z)
φ ′k(z)

]
>−δ , z ∈ U, (k = 1,2),
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where

φk(z) =
(1−α)I s

p,b gk(z)+αI s+1
p,b gk(z)

zp−1 , (k = 1,2), (3.23)

and δ is given by (3.3).

Let f ∈ A(p) such that
(1−α)I s

p,b f (z)+αI s+1
p,b f (z)

zp−1 is univalent in U and
I s+1

p,b f (z)

zp−1 ∈Q. Then,

φ1(z) =
(1−α)I s

p,b g1(z)+αI s+1
p,b g1(z)

zp−1 ≺
(1−α)I s

p,b f (z)+αI s+1
p,b f (z)

zp−1 ≺

φ2(z) =
(1−α)I s

p,b g2(z)+αI s+1
p,b g2(z)

zp−1

implies

G1(z) :=
I s+1

p,b g1(z)

zp−1 ≺ F(z) :=
I s+1

p,b f (z)

zp−1 ≺ G2(z) :=
I s+1

p,b g2(z)

zp−1 .

Moreover, the functions G1 and G2 are respectively the best subordinant and the best dominant.

The assumptions that the functions

φ3(z) =
(1−α)I s

p,b f (z)+αI s+1
p,b f (z)

zp−1 (3.24)

and

Φ(z) =
I s+1

p,b f (z)

zp−1 (3.25)

need to be univalent in U are difficult to be checked. Thus, in the following sandwich-type result we will

replace these assumptions by another sufficient conditions, that are more easy to be verified.

Corollary 3.3. Let α < 1 and b∈C\Z−, with Reb>−α . For the given functions f ∈A(p), gk ∈Aτk(p),

τk > 0 (k = 1,2), suppose that

Re
[

1+
zφ ′′k (z)
φ ′k(z)

]
>−δ , z ∈ U, (k = 1,2,3), (3.26)

where φ1, φ2 and φ3 are defined by (3.23) and (3.24) respectively, and δ is given by (3.3). Then,

φ1(z) =
(1−α)I s

p,b g1(z)+αI s+1
p,b g1(z)

zp−1 ≺ φ3(z) =
(1−α)I s

p,b f (z)+αI s+1
p,b f (z)

zp−1 ≺

φ2(z) =
(1−α)I s

p,b g2(z)+αI s+1
p,b g2(z)

zp−1



Journal of Orissa Mathematical Society 17

implies

G1(z) :=
I s+1

p,b g1(z)

zp−1 ≺Φ(z) =
I s+1

p,b f (z)

zp−1 ≺ G2(z) :=
I s+1

p,b g2(z)

zp−1 .

Moreover, the functions G1 and G2 are respectively the best subordinant and the best dominant.

Proof. In order to prove our corollary, we have to show that the condition (3.26) for k = 3 implies the

univalence of the functions φ3 and Φ defined by (3.24) and (3.25).

Since 0 < δ ≤ 1
2 from Remark 3.1, the condition (3.26) for k = 3 means that φ3 ∈ K(−δ )⊆ K

(
−1

2

)
,

and from [4] it follows that φ3 is a close-to-convex function in U, hence it is univalent in U. Furthermore,

by using the same techniques as in the proof of Theorem 3.1 we can prove the convexity (univalence)

of Φ and so the details may be omitted. Therefore, by applying Theorem 3.3 we obtain the desired

result.

The following special case of Corollary 3.3 is obtained for b = 0, s =−1 and p = 1:

Corollary 3.4. Let 0<α < 1 and for the given functions f ∈A(1), gk ∈Aτk(1), τk > 0 (k = 1,2), suppose

that the inequalities (3.26) hold, where

φ1(z) = (1−α)zg′1(z)+αg1(z), φ2(z) = (1−α)zg′2(z)+αg2(z),

φ3(z) = (1−α)z f ′(z)+α f (z),

and δ is given by (3.17). Then,

(1−α)zg′1(z)+αg1(z)≺ (1−α)z f ′(z)+α f (z)≺ (1−α)zg′2(z)+αg2(z)

implies

g1(z)≺ f (z)≺ g2(z).

Moreover, the functions g1 and g2 are respectively the best subordinant and the best dominant.
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Next, we will give an interesting special case of our main results, obtained for an appropriate choice

of the function g and the corresponding parameters.

Thus, for α < 1 and b ∈ C\Z−, with Reb >−α , let consider the function g ∈ A(1) defined by

g(z) = a1 z+
∞

∑
n=1

an+1zn+1, z ∈ U,

with

an+1 =
1

n+1
n+1+b

(1−α)n+1+b

(
n+1+b

1+b

)s(−2(δ +1)
n

)
, n≥ 1,

where δ is given by (3.3), (
σ

n

)
=

σ(σ −1) . . .(σ −n+1)
n!

, σ ∈ C, n ∈ N,

and all powers are principal ones. The coefficient a1 ∈ C \ {0} is choose to be fixed, hence g ∈ Aτ(1)

with τ = |a1|> 0.

If the function φ is defined by (3.2) with p = 1, then

φ(z) = a1
1− (1+ z)−(2δ+1)

2δ +1
= a1z+ . . . , z ∈ U,

where the power is principal one, i.e.

(1+ z)−(2δ+1)
∣∣∣
z=0

= 1.

A simple computation shows that

Re
[

1+
zφ ′′(z)
φ ′(z)

]
= Re

1− (2δ +1)z
1+ z

>−δ , z ∈ U,

and from Theorem 3.1 and Theorem 3.2 we obtain:

Example 3.1. Let α < 1 and b ∈ C\Z−, with Reb >−α , and let δ be given by (3.3).

1. If f ∈ A(1) such that

(1−α)I s
1,b f (z)+αI s+1

1,b f (z)≺ a1
1− (1+ z)−(2δ+1)

2δ +1
, (a1 6= 0),
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then

I s+1
1,b f (z)≺ a1 z+

∞

∑
n=1

1
n+1

1+b
(1−α)n+1+b

(
−2(δ +1)

n

)
zn+1,

and the right-hand side function is the best dominant (the power is principal one).

2. If f ∈ A(1) such that (1−α)I s
1,b f (z)+αI s+1

1,b f (z) is univalent in U and I s+1
1,b f (z) ∈Q, then

a1
1− (1+ z)−(2δ+1)

2δ +1
≺ (1−α)I s

1,b f (z)+αI s+1
1,b f (z), (a1 6= 0),

implies

a1 z+
∞

∑
n=1

1
n+1

1+b
(1−α)n+1+b

(
−2(δ +1)

n

)
zn+1 ≺I s+1

1,b f (z),

and the right-hand side function is the best subordinant (the power is principal one).

By similar reasons, for the above mentioned choice of the function g, the Theorem 3.3 reduces to the

following sandwich-type results:

Example 3.2. Let α < 1 and b ∈ C\Z−, with Reb >−α , and let δ1,δ2 ≤ δ where δ is given by (3.3).

If f ∈ A(1) such that (1−α)I s
1,b f (z)+αI s+1

1,b f (z) is univalent in U and I s+1
1,b f (z) ∈Q, then

a1
1− (1+ z)−(2δ1+1)

2δ1 +1
≺ (1−α)I s

1,b f (z)+αI s+1
1,b f (z)≺ ã1

1− (1+ z)−(2δ2+1)

2δ2 +1
, (a1, ã1 6= 0),

implies

a1 z+
∞

∑
n=1

1
n+1

1+b
(1−α)n+1+b

(
−2(δ1 +1)

n

)
zn+1 ≺I s+1

1,b f (z)≺

ã1 z+
∞

∑
n=1

1
n+1

1+b
(1−α)n+1+b

(
−2(δ2 +1)

n

)
zn+1.

Moreover, the left-hand side functions and the right-hand side are, respectively, the best subordinant and

the best dominant (all powers are principal ones).

For b = 0 and s =−1, the Example 3.2 gives us the next special case:
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Example 3.3. Let 0 < α < 1 and let δ1,δ2 ≤ δ where δ is given by (3.17).

If f ∈ A(1) such that (1−α)z f ′(z)+α f (z) is univalent in U and f ∈Q, then

a1
1− (1+ z)−(2δ1+1)

2δ1 +1
≺ (1−α)z f ′(z)+α f (z)≺ ã1

1− (1+ z)−(2δ2+1)

2δ2 +1
, (a1, ã1 6= 0),

implies

a1 z+
∞

∑
n=1

1
n+1

1
(1−α)n+1

(
−2(δ1 +1)

n

)
zn+1 ≺ f (z)≺

ã1 z+
∞

∑
n=1

1
n+1

1
(1−α)n+1

(
−2(δ2 +1)

n

)
zn+1.

Moreover, the left-hand side functions and the right-hand side are, respectively, the best subordinant and

the best dominant (all powers are principal ones).
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Abstract

Some inequalities in inner product spaces related to Buzano’s and Grüss’ results

are given. Applications for discrete and integral inequalities are provided as well.
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1 Introduction

Let (H, 〈·, ·〉) be an inner product space over the real or complex numbers field K. The following

inequality is well known in literature as the Schwarz inequality

‖x‖ ‖y‖ ≥ |〈x, y〉| for any x, y ∈ H. (1.1)
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2. School of Computational & Applied Mathematics, University of the Witwatersrand, Private Bag 3,

Johannesburg 2050, South Africa
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The equality case holds in (1.1) if and only if there exists a constant λ ∈ K such that x = λy.

In 1985 the author [4] (see also [19]) established the following refinement of (1.1):

‖x‖ ‖y‖ ≥ |〈x, y〉 − 〈x, e〉 〈e, y〉|+ |〈x, e〉 〈e, y〉| ≥ |〈x, y〉| (1.2)

for any x, y, e ∈ H with ‖e‖ = 1.

Using the triangle inequality for modulus we have

|〈x, y〉 − 〈x, e〉 〈e, y〉| ≥ |〈x, e〉 〈e, y〉| − |〈x, y〉|

and by (1.2) we get

‖x‖ ‖y‖ ≥ |〈x, y〉 − 〈x, e〉 〈e, y〉|+ |〈x, e〉 〈e, y〉|

≥ 2 |〈x, e〉 〈e, y〉| − |〈x, y〉| ,

which implies the Buzano inequality [2]

1

2
[‖x‖ ‖y‖+ |〈x, y〉|] ≥ |〈x, e〉 〈e, y〉| (1.3)

that holds for any x, y, e ∈ H with ‖e‖ = 1.

In [5], the author has proved the following Grüss’ type inequality in real or complex inner

product spaces.

Theorem 1.1. Let (H, 〈·, ·〉) be an inner product space over K and e ∈ H, ‖e‖ = 1. If ϕ, γ,Φ,Γ

are real or complex numbers and x, y are vectors in H such that the conditions

Re 〈Φe− x, x− ϕe〉 ≥ 0 and Re 〈Γe− y, y − γe〉 ≥ 0 (1.4)

hold, then we have the inequality

|〈x, y〉 − 〈x, e〉 〈e, y〉| ≤ 1

4
|Φ− ϕ| |Γ− γ| . (1.5)

The constant 1
4 is best possible in the sense that it cannot be replaced by a smaller quantity.
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For other Schwarz, Buzano and Grüss related inequalities in inner product spaces, see [1]-[3],

[4]-[13], [17]-[20], [22]-[29], and the monographs [14], [15] and [16].

2 Main Results

The following results hold:

Theorem 2.1. Let (H, 〈·, ·〉) be an inner product space over the real or complex numbers field

K. If x, y, e, f ∈ H with ‖e‖ = ‖f‖ = 1, then

‖x‖ ‖y‖ − |〈x, e〉 〈f, y〉| (2.6)

≥ |〈x, y〉 − 〈x, e〉 〈e, y〉 − 〈x, f〉 〈f, y〉+ 〈x, e〉 〈f, y〉 〈e, f〉| .

Proof. Using Schwarz inequality we have

‖x− 〈x, e〉 e‖2 ‖y − 〈y, f〉 f‖2 ≥ |〈x− 〈x, e〉 e, y − 〈y, f〉 f〉|2 (2.7)

for any x, y, e, f ∈ H with ‖e‖ = ‖f‖ = 1.

Since

‖x− 〈x, e〉 e‖2 = ‖x‖2 − |〈x, e〉|2 , ‖y − 〈y, f〉 f‖2 = ‖y‖2 − |〈y, f〉|2

and

〈x− 〈x, e〉 e, y − 〈y, f〉 f〉 = 〈x, y〉 − 〈x, e〉 〈e, y〉 − 〈x, f〉 〈f, y〉+ 〈x, e〉 〈f, y〉 〈e, f〉 ,

then by (2.7) we get

(
‖x‖2 − |〈x, e〉|2

)(
‖y‖2 − |〈y, f〉|2

)
(2.8)

≥ |〈x, y〉 − 〈x, e〉 〈e, y〉 − 〈x, f〉 〈f, y〉+ 〈x, e〉 〈f, y〉 〈e, f〉|2

for any x, y, e, f ∈ H with ‖e‖ = ‖f‖ = 1.
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Using the elementary inequality

(ac− bd)2 ≥
(
a2 − b2

) (
c2 − d2

)
that holds for any real numbers a, b, c, d ∈ R, we have

(‖x‖ ‖y‖ − |〈x, e〉| |〈y, f〉|)2 ≥
(
‖x‖2 − |〈x, e〉|2

)(
‖y‖2 − |〈y, f〉|2

)
(2.9)

for any x, y, e, f ∈ H with ‖e‖ = ‖f‖ = 1.

By Schwarz inequality for the pairs (x, e) and (y, f) we have

‖x‖ ≥ |〈x, e〉| and ‖y‖ ≥ |〈y, f〉| ,

which shows that

‖x‖ ‖y‖ − |〈x, e〉| |〈y, f〉| ≥ 0,

for any x, y, e, f ∈ H with ‖e‖ = ‖f‖ = 1.

Making use of (2.8) and (2.9) we get

(‖x‖ ‖y‖ − |〈x, e〉| |〈y, f〉|)2 (2.10)

≥ |〈x, y〉 − 〈x, e〉 〈e, y〉 − 〈x, f〉 〈f, y〉+ 〈x, e〉 〈f, y〉 〈e, f〉|2

and by taking the square root in (2.10) we get the desired result.

Corollary 2.2. With the assumptions of Theorem 2.1 and if e ⊥ f, i.e. 〈e, f〉 = 0, then we

have the inequality

‖x‖ ‖y‖ − |〈x, e〉 〈f, y〉| ≥ |〈x, y〉 − 〈x, e〉 〈e, y〉 − 〈x, f〉 〈f, y〉| . (2.11)

Remark 2.3. From the inequality (2.11) we have

‖x‖ ‖y‖ ≥ |〈x, y〉 − 〈x, e〉 〈e, y〉 − 〈x, f〉 〈f, y〉|+ |〈x, e〉 〈f, y〉| (2.12)

≥ |〈x, y〉 − 〈x, e〉 〈e, y〉 − 〈x, f〉 〈f, y〉 ± 〈x, e〉 〈f, y〉|
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By the triangle inequality we also have

|〈x, y〉 − 〈x, e〉 〈e, y〉 − 〈x, f〉 〈f, y〉| ≥ |〈x, e〉 〈e, y〉+ 〈x, f〉 〈f, y〉| − |〈x, y〉|

and by the first inequality in (2.14) we get

‖x‖ ‖y‖ ≥ |〈x, e〉 〈e, y〉+ 〈x, f〉 〈f, y〉| − |〈x, y〉|+ |〈x, e〉 〈f, y〉| ,

which implies

‖x‖ ‖y‖+ |〈x, y〉| ≥ |〈x, e〉 〈e, y〉+ 〈x, f〉 〈f, y〉|+ |〈x, e〉 〈f, y〉| (2.13)

≥ |〈x, e〉 〈e, y〉+ 〈x, f〉 〈f, y〉+ 〈x, e〉 〈f, y〉|

for any x, y, e, f ∈ H with ‖e‖ = ‖f‖ = 1 and e ⊥ f.

Corollary 2.4. With the assumptions of Theorem 2.1 we have

‖x‖ ‖y‖ − |〈x, e〉 〈f, y〉| (1− |〈e, f〉|) ≥ |〈x, y〉 − 〈x, e〉 〈e, y〉 − 〈x, f〉 〈f, y〉| (2.14)

and

‖x‖ ‖y‖+ |〈x, y〉 − 〈x, e〉 〈e, y〉 − 〈x, f〉 〈f, y〉| ≥ |〈x, e〉 〈f, y〉| (|〈e, f〉|+ 1) . (2.15)

Indeed, by the triangle inequality we have

|〈x, y〉 − 〈x, e〉 〈e, y〉 − 〈x, f〉 〈f, y〉+ 〈x, e〉 〈f, y〉 〈e, f〉|

≥ |〈x, y〉 − 〈x, e〉 〈e, y〉 − 〈x, f〉 〈f, y〉| − |〈x, e〉 〈f, y〉 〈e, f〉|

and by (2.6) we get (2.14).

By the triangle inequality we also have

|〈x, y〉 − 〈x, e〉 〈e, y〉 − 〈x, f〉 〈f, y〉+ 〈x, e〉 〈f, y〉 〈e, f〉|

≥ |〈x, e〉 〈f, y〉 〈e, f〉| − |〈x, y〉 − 〈x, e〉 〈e, y〉 − 〈x, f〉 〈f, y〉|

and by (2.6) we get (2.15).
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Remark 2.5. With the assumptions of Theorem 2.1 and if |〈e, f〉| = 1, then we have

‖x‖ ‖y‖ ≥ |〈x, y〉 − 〈x, e〉 〈e, y〉 − 〈x, f〉 〈f, y〉| (2.16)

and

1

2
[‖x‖ ‖y‖+ |〈x, y〉 − 〈x, e〉 〈e, y〉 − 〈x, f〉 〈f, y〉|] ≥ |〈x, e〉 〈f, y〉| . (2.17)

If we take f = e in (2.16) and (2.17), then we get the inequalities

‖x‖ ‖y‖ ≥ |〈x, y〉 − 2 〈x, e〉 〈e, y〉| (2.18)

and

1

2
[‖x‖ ‖y‖+ |〈x, y〉 − 2 〈x, e〉 〈e, y〉|] ≥ |〈x, e〉 〈e, y〉| (2.19)

for any x, y, e ∈ H with ‖e‖ = 1.

Using the triangle inequality we have

|〈x, y〉 − 2 〈x, e〉 〈e, y〉| ≥ 2 |〈x, e〉 〈e, y〉| − |〈x, y〉|

and by (2.18) we get

‖x‖ ‖y‖ ≥ |〈x, y〉 − 2 〈x, e〉 〈e, y〉| ≥ 2 |〈x, e〉 〈e, y〉| − |〈x, y〉| . (2.20)

The inequality between the first and last term in (2.20) is equivalent to Buzano’s inequality (1.3).

The following lemma holds, see [6]:

Lemma 2.6. Let a, x,A be vectors in the inner product space (H, 〈·, ·〉) over K with a 6= A.

Then

Re 〈A− x, x− a〉 ≥ 0 (2.21)

if and only if ∥∥∥∥x− a+A

2

∥∥∥∥ ≤ 1

2
‖A− a‖ . (2.22)



Journal of Orissa Mathematical Society 29

Proof. Define

I1 := Re 〈A− x, x− a〉 and I2 :=
1

4
‖A− a‖2 −

∥∥∥∥x− a+A

2

∥∥∥∥2 .
A simple calculation shows that

I1 = I2 = Re [〈x, a〉+ 〈A, x〉]− Re 〈A, a〉 − ‖x‖2

and thus, obviously, I1 ≥ 0 iff I2 ≥ 0 showing the required equivalence.

The following corollary is obvious:

Corollary 2.7. Let x, e ∈ H with ‖e‖ = 1 and δ,∆ ∈ K with δ 6= ∆. Then

Re 〈∆e− x, x− δe〉 ≥ 0 (2.23)

iff ∥∥∥∥x− δ + ∆

2
· e
∥∥∥∥ ≤ 1

2
|∆− δ| . (2.24)

Remark 2.8. If H = C, then Re [(A− x) (x̄− ā)] ≥ 0 if and only if
∣∣x− a+A

2

∣∣ ≤ 1
2 |A− a| ,

where a, x,A ∈ C. If H = R, and A > a then a ≤ x ≤ A if and only if
∣∣x− a+A

2

∣∣ ≤ 1
2 (A− a) .

The following lemma is of interest [6].

Lemma 2.9. Let x, e ∈ H with ‖e‖ = 1. Then one has the following representation

‖x‖2 − |〈x, e〉|2 = inf
λ∈K
‖x− λe‖2 ≥ 0. (2.25)

Proof. Observe, for any λ ∈ K, that

〈x− λe, x− 〈x, e〉 e〉 = ‖x‖2 − |〈x, e〉|2 − λ
[
〈e, x〉 − 〈e, x〉 ‖e‖2

]
= ‖x‖2 − |〈x, e〉|2 .
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Using Schwarz’s inequality, we have[
‖x‖2 − |〈x, e〉|2

]2
= |〈x− λe, x− 〈x, e〉 e〉|2 ≤ ‖x− λe‖2 ‖x− 〈x, e〉 e‖2

= ‖x− λe‖2
[
‖x‖2 − |〈x, e〉|2

]
,

giving the bound

‖x‖2 − |〈x, e〉|2 ≤ ‖x− λe‖2 , λ ∈ K. (2.26)

Taking the infimum in (2.26) over λ ∈ K, we deduce

‖x‖2 − |〈x, e〉|2 ≤ inf
λ∈K
‖x− λe‖2 .

Since, for λ0 = 〈x, e〉 , we get ‖x− λ0e‖2 = ‖x‖2 − |〈x, e〉|2 , then the representation (2.25) is

proved.

The following result also holds:

Theorem 2.10. Let (H, 〈·, ·〉) be an inner product space over K and e, f ∈ H, ‖e‖ = ‖f‖ = 1.

If ϕ, γ,Φ,Γ are real or complex numbers and x, y are vectors in H such that the conditions

Re 〈Φe− x, x− ϕe〉 ≥ 0, Re 〈Γf − y, y − γf〉 ≥ 0 (2.27)

hold, or, equivalently, the following assumptions∥∥∥∥x− ϕ+ Φ

2
e

∥∥∥∥ ≤ 1

2
|Φ− ϕ| ,

∥∥∥∥y − γ + Γ

2
f

∥∥∥∥ ≤ 1

2
|Γ− γ| (2.28)

are valid, then one has the inequality

|〈x, y〉 − 〈x, e〉 〈e, y〉 − 〈x, f〉 〈f, y〉+ 〈x, e〉 〈f, y〉 〈e, f〉| ≤ 1

4
|Φ− ϕ| |Γ− γ| . (2.29)

Proof. Using the inequality (2.8) and Lemma 2.9 we have

|〈x, y〉 − 〈x, e〉 〈e, y〉 − 〈x, f〉 〈f, y〉+ 〈x, e〉 〈f, y〉 〈e, f〉|2 (2.30)

≤
(
‖x‖2 − |〈x, e〉|2

)(
‖y‖2 − |〈y, f〉|2

)
= inf

λ∈K
‖x− λe‖2 inf

η∈K
‖y − ηf‖2

≤
∥∥∥∥x− ϕ+ Φ

2
e

∥∥∥∥2 ∥∥∥∥y − γ + Γ

2
f

∥∥∥∥2 ≤ 1

4
|Φ− ϕ|2 1

4
|Γ− γ|2 ,
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which is equivalent to the desired inequality (2.29).

Corollary 2.11. With the assumptions of Theorem 2.10 and if e ⊥ f, then we have the simpler

inequality

|〈x, y〉 − 〈x, e〉 〈e, y〉 − 〈x, f〉 〈f, y〉| ≤ 1

4
|Φ− ϕ| |Γ− γ| . (2.31)

Remark 2.12. If we take f = e in Theorem 2.10, then we get the result from Theorem 1.1.

3 Applications

Consider the Hilbert space Cn endowed with the inner product 〈·, ·〉p : Cn×Cn → C defined by

〈x,y〉p :=

n∑
j=1

pjxjyj ,

where p = (p1, ..., pn) is a probability distribution, i.e. pj ≥ 0, j ∈ {1, ..., n} with
∑n

j=1 pj = 1

and

x = (x1, ..., xn) , y = (y1, ..., yn) ∈ Cn.

Assume that e = (e1, ..., en) , f = (f1, ..., fn) ∈ Cn with

n∑
j=1

pj |ej |2 =

n∑
j=1

pj |fj |2 = 1. (3.32)

Then for any x = (x1, ..., xn) , y = (y1, ..., yn) ∈ Cn we have the inequality n∑
j=1

pj |xj |2
1/2 n∑

j=1

pj |yj |2
1/2

−

∣∣∣∣∣∣
n∑
j=1

pjxjej

n∑
j=1

pjfjyj

∣∣∣∣∣∣ (3.33)

≥

∣∣∣∣∣∣
n∑
j=1

pjxjyj −
n∑
j=1

pjxjej

n∑
j=1

pjejyj

−
n∑
j=1

pjxjf j

n∑
j=1

pjfjyj +

n∑
j=1

pjxjej

n∑
j=1

pjfjyj

n∑
j=1

pjejf j

∣∣∣∣∣∣ .
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Moreover, if e = (e1, ..., en) , f = (f1, ..., fn) ∈ Cn satisfy the additional condition

n∑
j=1

pjejf j = 0, (3.34)

then from (3.33) we get n∑
j=1

pj |xj |2
1/2 n∑

j=1

pj |yj |2
1/2

−

∣∣∣∣∣∣
n∑
j=1

pjxjej

n∑
j=1

pjfjyj

∣∣∣∣∣∣ (3.35)

≥

∣∣∣∣∣∣
n∑
j=1

pjxjyj −
n∑
j=1

pjxjej

n∑
j=1

pjejyj −
n∑
j=1

pjxjf j

n∑
j=1

pjfjyj

∣∣∣∣∣∣ .
If we denote by C (0, 1) the unit circle of radius 1 in C, namely C (0, 1) = {z ∈ C| |z| = 1} ,

then for e = (e1, ..., en) , f = (f1, ..., fn) ∈ Cn with ej , fj ∈ C (0, 1) for any j ∈ {1, ..., n} we have

that the condition (3.32) holds true and therefore the inequality (3.33) is valid.

If we consider the nonnegative weights wj ≥ 0, j ∈ {1, ..., n} with Wn =
∑n

k=1wk > 0 and if

we assume that

1

Wn

n∑
j=1

wj |ej |2 =
1

Wn

n∑
j=1

wj |fj |2 = 1 (3.36)

then by (3.33) we get  1

Wn

n∑
j=1

wj |xj |2
1/2 1

Wn

n∑
j=1

wj |yj |2
1/2

(3.37)

−

∣∣∣∣∣∣ 1

Wn

n∑
j=1

wjxjej
1

Wn

n∑
j=1

wjfjyj

∣∣∣∣∣∣
≥

∣∣∣∣∣∣ 1

Wn

n∑
j=1

wjxjyj −
1

Wn

n∑
j=1

wjxjej
1

Wn

n∑
j=1

wjejyj

− 1

Wn

n∑
j=1

wjxjf j
1

Wn

n∑
j=1

wjfjyj

+
1

Wn

n∑
j=1

wjxjej
1

Wn

n∑
j=1

wjfjyj
1

Wn

n∑
j=1

wjejf j

∣∣∣∣∣∣ .
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Let f (z) =
∑∞

n=0 anz
n be a power series with nonnegative coefficients and convergent on the

open disk D (0, R) with R > 0 or R =∞.

The most important power series with nonnegative coefficients that can be used to illustrate

the above results are:

exp (z) =
∞∑
n=0

1

n!
zn, z ∈ C,

1

1− z
=
∞∑
n=0

zn, z ∈ D (0, 1) , (3.38)

ln
1

1− z
=

∞∑
n=1

1

n
zn, z ∈ D (0, 1) , cosh z =

∞∑
n=0

1

(2n)!
z2n, z ∈ C,

sinh z =
∞∑
n=0

1

(2n+ 1)!
z2n+1, z ∈ C.

Other important examples of functions as power series representations with nonnegative coeffi-

cients are:

1

2
ln

(
1 + z

1− z

)
=

∞∑
n=1

1

2n− 1
z2n−1, z ∈ D (0, 1) , (3.39)

sin−1 (z) =
∞∑
n=0

Γ
(
n+ 1

2

)
√
π (2n+ 1)n!

z2n+1, z ∈ D (0, 1) ,

tanh−1 (z) =
∞∑
n=1

1

2n− 1
z2n−1, z ∈ D (0, 1) ,

2F1 (α, β, γ, z) :=
∞∑
n=0

Γ (n+ α) Γ (n+ β) Γ (γ)

n!Γ (α) Γ (β) Γ (n+ γ)
zn, α, β, γ > 0

z ∈ D (0, 1) ,

where Γ is Gamma function.

Proposition 3.1. Let f (z) =
∑∞

n=0 anz
n be a power series with nonnegative coefficients and

convergent on the open disk D (0, R) with R > 0 or R = ∞. If 0 < p < R, u, v ∈ C (0, 1) and
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x, y ∈ C with p |x|2 , p |y|2 < R then we have the inequality

f
(
p |x|2

)
f (p)

1/2f
(
p |y|2

)
f (p)

1/2

−
∣∣∣∣f (pxu)

f (p)

f (pvy)

f (p)

∣∣∣∣
≥
∣∣∣∣f (pxy)

f (p)
− f (pxu)

f (p)

f (puy)

f (p)
− f (pxv)

f (p)

f (pvy)

f (p)
+
f (pxu)

f (p)

f (pvy)

f (p)

f (puv)

f (p)

∣∣∣∣ . (3.40)

Proof. If u, v ∈ C (0, 1) then for any n ≥ 0 we have un, vn ∈ C (0, 1). Observe that for any m ≥ 1

we have that ∑m
n=0 anp

n |un|2∑m
n=0 anp

n
=

∑m
n=0 anp

n |vn|2∑m
n=0 anp

n
=

∑m
n=0 anp

n∑m
n=0 anp

n
= 1.

Using the inequality (3.37) we have(∑m
n=0 anp

n |x|2n∑m
n=0 anp

n

)1/2(∑m
n=0 anp

n |y|2n∑m
n=0 anp

n

)1/2

(3.41)

−
∣∣∣∣∑m

n=0 anp
n (xu)n∑m

n=0 anp
n

∑m
n=0 anp

n (vy)n∑m
n=0 anp

n

∣∣∣∣
≥
∣∣∣∣∑m

n=0 anp
n (xy)n∑m

n=0 anp
n

−
∑m

n=0 anp
n (xu)n∑m

n=0 anp
n

∑m
n=0 anp

n (uy)n∑m
n=0 anp

n

−
∑m

n=0 anp
n (xv)n∑m

n=0 anp
n

∑m
n=0 anp

n (vy)n∑m
n=0 anp

n

+

∑m
n=0 anp

n (xu)n∑m
n=0 anp

n

∑m
n=0 anp

n (vy)n∑m
n=0 anp

n

∑m
n=0 anp

n (uv)n∑m
n=0 anp

n

∣∣∣∣ .
Since all the series whose partial sums are involved in inequality (3.41) are convergent, then by

letting m→∞ in (3.41) we get the desired result (3.40).

Remark 3.2. The inequality (3.40) can provide some particular inequalities of interest. For

instance, if we take f (z) = exp (z) , z ∈ C, then we get

exp

[
p

(
|x|2 + |y|2

2
− 1

)]
− |exp [p (xu+ vy − 2)]| (3.42)

≥ |exp [p (xy − 1)]− exp [p (xu+ uy − 2)]− exp [p (xv + vy − 2)]

+ exp [p (xu+ vy + uv − 3)]|
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for any p > 0, u, v ∈ C (0, 1) and x, y ∈ C.

If we take u = v = 1, then from (3.42) we get

exp

[
p

(
|x|2 + |y|2

2
− 1

)]
− |exp [p (x+ y − 2)]| (3.43)

≥ |exp [p (xy − 1)]− exp [p (x+ y − 2)]|

for any p > 0 and x, y ∈ C.

Moreover, if we take in (3.43) x = y = z ∈ C, then we get

exp
[
p
(
|z|2 − 1

)]
− |exp [2p (z − 1)]| ≥

∣∣exp
[
p
(
z2 − 1

)]
− exp [2p (z − 1)]

∣∣ (3.44)

for any p > 0 and z ∈ C.

Consider L2 [a, b] the Hilbert space of all complex valued functions f with
∫ b
a |f (t)|2 dt <∞.

The inner product is given by

〈f, g〉2 :=

∫ b

a
f (t) g (t)dt.

Assume that h, k ∈ L2 [a, b] with∫ b

a
|h (t)|2 dt =

∫ b

a
|k (t)|2 dt = 1. (3.45)

For instance, if h (t) = 1√
b−aρ (t) , k (t) = 1√

b−aϕ (t) with ρ (t) , ϕ (t) ∈ C (0, 1) for almost any

t ∈ [a, b] , then h, k ∈ L2 [a, b] and the condition (3.45) is satisfied.

Proposition 3.3. Assume that h, k ∈ L2 [a, b] with the property (3.45). Then for any f, g ∈

L2 [a, b] we have the inequality(∫ b

a
|f (t)|2 dt

)1/2(∫ b

a
|g (t)|2 dt

)1/2

−
∣∣∣∣∫ b

a
f (t)h (t)dt

∫ b

a
k (t) g (t)dt

∣∣∣∣ (3.46)

≥
∣∣∣∣∫ b

a
f (t) g (t)dt−

∫ b

a
f (t)h (t)dt

∫ b

a
h (t) g (t)dt

−
∫ b

a
f (t) k (t)dt

∫ b

a
k (t) g (t)dt

+

∫ b

a
f (t)h (t)dt

∫ b

a
k (t) g (t)dt

∫ b

a
h (t) k (t)dt

∣∣∣∣ .
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The proof follows by Theorem 2.1 for the inner product 〈·, ·〉2 .

Remark 3.4. If ρ (t) , ϕ (t) ∈ C (0, 1) for almost any t ∈ [a, b] , then we have the following

inequalities for integral means(
1

b− a

∫ b

a
|f (t)|2 dt

)1/2(
1

b− a

∫ b

a
|g (t)|2 dt

)1/2

(3.47)

−
∣∣∣∣ 1

b− a

∫ b

a
f (t) ρ (t)dt

1

b− a

∫ b

a
ϕ (t) g (t)dt

∣∣∣∣
≥
∣∣∣∣ 1

b− a

∫ b

a
f (t) g (t)dt− 1

b− a

∫ b

a
f (t) ρ (t)dt

1

b− a

∫ b

a
ρ (t) g (t)dt

− 1

b− a

∫ b

a
f (t)ϕ (t)dt

1

b− a

∫ b

a
ϕ (t) g (t)dt

+
1

b− a

∫ b

a
f (t) ρ (t)dt

1

b− a

∫ b

a
ϕ (t) g (t)dt

1

b− a

∫ b

a
ρ (t)ϕ (t)dt

∣∣∣∣ ,
for any f, g ∈ L2 [a, b] .

If we take ρ (t) = 1, ϕ (t) = sgn
(
t− a+b

2

)
, t ∈ [a, b] , then ρ (t) , ϕ (t) ∈ C (0, 1) for almost any

t ∈ [a, b] and since ∫ b

a
ρ (t)ϕ (t) =

∫ b

a
sgn

(
t− a+ b

2

)
dt = 0,

then we get from (3.47)(
1

b− a

∫ b

a
|f (t)|2 dt

)1/2(
1

b− a

∫ b

a
|g (t)|2 dt

)1/2

(3.48)

−
∣∣∣∣ 1

b− a

∫ b

a
f (t) dt

1

b− a

∫ b

a
sgn

(
t− a+ b

2

)
g (t)dt

∣∣∣∣
≥
∣∣∣∣ 1

b− a

∫ b

a
f (t) g (t)dt− 1

b− a

∫ b

a
f (t) dt

1

b− a

∫ b

a
g (t)dt

− 1

b− a

∫ b

a
sgn

(
t− a+ b

2

)
f (t) dt

1

b− a

∫ b

a
sgn

(
t− a+ b

2

)
g (t)dt

∣∣∣∣
for any f, g ∈ L2 [a, b] .

On making use of Theorem 2.10 one can state similar discrete and integral inequalities. How-

ever the details are not presented here.
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1 Introduction

Convex functions have been generalized and extended in several directions using interesting and novel

ideas. Several new classes of convex functions and convex sets have been introduced and investigated.

The harmonic set was introduced by Shi et. al. [19]. It is worth mentioning that the weighted harmonic

mean is used to define the harmonic set, which has applications in electrical circuit theory and other

branches of sciences. Using the weighted harmonic means, one usually define the harmonic convex

functions, which have appeared as significant and important generalization of convex functions. Ander-

son et al. [1] and Iscan [6] have investigated several properties of the harmonic convex functions. For

recent generalizations and applications of harmonic convex functions, see [2, 7, 9, 11, 13, 14, 15, 16] and

references therein.

Motivated and inspired by the ongoing research, we introduce and investigate a new class of har-

monic convex functions, which is called invariant harmonic convex functions. It is shown that this new

class includes several new classes of harmonic convex functions such as invariant harmonic P-functions,

invariant harmonic tgs-convex functions and invariant harmonic Godunova-Levin convex functions as

special cases. We obtain several new Hermite-Hadamard type inequalities for invariant h-harmonic con-

vex functions, product of two invariant h-harmonic convex functions. One can obtain several new results

for other classes of convex functions as special cases of our results. These results can be viewed as

significant contributions of this area. Ideas of this paper may motivate further research.

2 Preliminaries

In this section, we recall some basic concepts and results.

Definition 1. [2, 7]. Let X be a topological vector space. Let K ⊂ X \ {0} be a set satisfying the

following conditions. For x,y ∈ K, let I[y,x] be a path joining y and x contained in K and the map
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γxy : [0,1]→ I[y,x] be continuous. The set K said to be invariant harmonic convex set in a given direction

v ∈ X, if the following harmonic convex combination properties are satisfied.

1. y+ tv ∈ K for all t ∈ [0,1], v ∈ X and y ∈ K.

2. y+ tv =

{
y, if t = 0;
x if t = 1,

if and only if, y+ tv = x+y
2 for t = 1

2 .

3. For any z ∈ I[y,x]⊂ K, we have z = y+ tv = x+(1− t)v.

4. xy
y+tv ∈ I[y,x] for all x,y ∈ K.

Remark 1. If t = 1
2 and v = x−y, then invariant harmonically convex set becomes harmonically convex

set.

Definition 2. [7]. For a given direction v ∈ Rn \ {0}, a function f is said to be invariant harmonically

convex function on the invariant harmonic convex set K, if

f
(

xy
y+ tv

)
≤ (1− t) f (x)+ t f (y), ∀x,y ∈ K, t ∈ [0,1].

For t = 1
2 , we have

f
(

2xy
2y+ v

)
≤ f (x)+ f (y)

2
, ∀x,y ∈ K.

Definition 3. Let K⊂R\{0} be an invariant harmonically convex set. For a given direction v∈Rn\{0},

a function f is said to be invariant harmonically convex function on the invariant harmonically convex

set K with respect to an arbitrary non-negative function h : [0,1]→ R, if

f
(

xy
y+ tv

)
≤ h(1− t) f (x)+h(t) f (y), ∀x,y ∈ K, t ∈ (0,1).

For t = 1
2 , we have

f
(

2xy
2y+ v

)
≤ h
(

1
2

)
[ f (x)+ f (y)], ∀x,y ∈ K.
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We would like to emphasize that for suitable and appropriate choice of the non-negative function h,

one can obtain a various new classes of convex functions, which include, but not limited to s-invariant

harmonic convex functions, invariant beta-harmonic convex functions and invariant P-harmonic convex

functions. This clearly shows that the class of invariant h-harmonic convex functions is very general and

unified ones.

The Euler Beta function is a special function defined by

B(x,y) =
∫ 1

0
tx−1(1− t)y−1dt =

Γ(x)Γ(y)
Γ(x+ y)

, ∀x,y > 0.

where Γ(·) is a Gamma function.

3 Main Results

In this section, we obtain the Hermite-Hadamard type integral inequalities for invariant harmonically

convex functions.

Theorem 1. For v ∈ R \ {0}, let K ⊂ Rn \ {0} be a invariant harmonically convex set. For a given

direction v ∈ Rn \{0}, let f : K→ R be an invariant harmonically convex function on the interior (K◦)

of K with respect to an arbitrary non-negative function h : [0,1]→ R. Then

f
(

2xy
x+ y

)
≤ h
(

1
2

)
[ f (x)+ f (y)], ∀x,y ∈ K.

Proof. Let f be an invariant harmonically convex function with respect to an arbitrary non-negative

function h. Then

f
(

xy
y+ tv

)
≤ h(1− t) f (x)+h(t) f (y), ∀x,y ∈ K, t ∈ (0,1).

For t = 1
2 , we have

f
(

2xy
2y+ v

)
≤ h
(

1
2

)
[ f (x)+ f (y)].
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Since x = y+ v, we have

f
(

2xy
x+ y

)
≤ h
(

1
2

)
[ f (x)+ f (y)],

This completes the proof.

Theorem 2. For v,w ∈ Rn \{0}, let K ⊂ Rn \{0} be a invariant harmonically convex set. For a,b ∈ K

with a < b, let there exists vectors v,w ∈ Rn \{0} with v+w = 0, such that

a+ tv =

{
a, if t = 0;
b if t = 1,

and b+ tw =

{
b, if t = 0;
a if t = 1.

Let f : K→ R be an invariant harmonically convex function on the interior (K◦) of K with respect to an

arbitrary non-negative function h : [0,1]→ R. If f ∈ L[a,b], then

1

2
[
h
(1

2

)]2 f
(

2ab
a+b

)
g
(

2ab
a+b

)
− ab

v

∫ b

a

f (x)g(x)
x2 dx

≤ M(a,b)
∫ 1

0
h(t)h(1− t)dt +N(a,b)

∫ 1

0
[h(t)]2dt,

where

M(a,b) = f (a)g(a)+ f (b)g(b) (3.1)

N(a,b) = f (a)g(b)+ f (b)g(a). (3.2)

Proof. Let f ,g be invariant harmonically convex functions with respect to an arbitrary non-negative

function h. With t = 1
2 and letting x = ab

a+tv and y = ab
b+tw , we have

f
(

2ab
a+b

)
≤ h
(

1
2

)[
f
(

ab
a+ tv

)
+ f
(

ab
b+ tw

)]
.

g
(

2ab
a+b

)
≤ h
(

1
2

)[
g
(

ab
a+ tv

)
+g
(

ab
b+ tw

)]
.

Consider

f
(

2ab
a+b

)
g
(

2ab
a+b

)
≤

[
h
(

1
2

)]2[
f
(

ab
a+ tv

)
+ f
(

ab
b+ tw

)][
g
(

ab
a+ tv

)
+g
(

ab
b+ tw

)]
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=

[
h
(

1
2

)]2[
f
(

ab
a+ tv

)
g
(

ab
a+ tv

)
+ f
(

ab
b+ tw

)
g
(

ab
b+ tw

)
+ f
(

ab
a+ tv

)
g
(

ab
b+ tw

)
+ f
(

ab
b+ tw

)
g
(

ab
a+ tv

)]
≤

[
h
(

1
2

)]2{
f
(

ab
a+ tv

)
g
(

ab
a+ tv

)
+ f
(

ab
b+ tw

)
g
(

ab
b+ tw

)
+
[
h(t) f (a)+h(1− t) f (b)

][
h(1− t)g(a)+h(t)g(b)

]
+
[
h(1− t) f (a)+h(t) f (b)

][
h(t)g(a)+h(1− t)g(b)

]}
=

[
h
(

1
2

)]2{∫ 1

0
f
(

ab
a+ tv

)
g
(

ab
a+ tv

)
dt +

∫ 1

0
f
(

ab
b+ tw

)
g
(

ab
b+ tw

)
dt

+2[ f (a)g(a)+ f (b)g(b)]
∫ 1

0
h(t)h(1− t)dt +2[ f (a)g(b)+ f (b)g(a)]

∫ 1

0
[h(t)]2dt

}
= 2

[
h
(

1
2

)]2[ab
v

∫ b

a

f (x)g(x)
x2 dx+M(a,b)

∫ 1

0
h(t)h(1− t)dt +N(a,b)

∫ 1

0
[h(t)]2dt

]
,

which is the required result.

Corollary 1. Under the assumptions of Theorem 2 with h(t) = t, we have

2 f
(

2ab
a+b

)
g
(

2ab
a+b

)
− ab

v

∫ b

a

f (x)g(x)
x2 dx

≤ 1
6

M(a,b)+
1
3

N(a,b),

where M(a,b) and N(a,b) are given by (3.1) and (3.2), respectively.

Corollary 2. Under the assumptions of Theorem 2 with h(t) = t p(1− t)q where p,q >−1, we have

22p+2q−1 f
(

2ab
a+b

)
g
(

2ab
a+b

)
− ab

v

∫ b

a

f (x)g(x)
x2 dx

≤ M(a,b)β (p+q+1, p+q+1)+N(a,b)β (2p+1,2q+1),

where M(a,b) and N(a,b) are given by (3.1) and (3.2), respectively.

Corollary 3. Under the assumptions of Theorem 2 with h(t) = ts, we have

22s−1 f
(

2ab
a+b

)
g
(

2ab
a+b

)
− ab

v

∫ b

a

f (x)g(x)
x2 dx

≤ M(a,b)β (s+1,s+1)+
1

2s+1
N(a,b),
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where M(a,b) and N(a,b) are given by (3.1) and (3.2), respectively.

Theorem 3. For v ∈R\{0}, let K ⊂Rn \{0} be a invariant harmonically convex set. For a,b ∈ K with

a < b, let there exists a vector v ∈ R\{0}, such that

a+ tv =

{
a, if t = 0;
b if t = 1.

Let f : K→ R be an invariant harmonically convex function on the interior (K◦) of K with respect to an

arbitrary non-negative function h : [0,1]→ R. If f ∈ L[a,b], then

ab
v

∫ b

a
h
(

ab−ax
xv

)
f (a)g(x)+g(a) f (x)

x2 dx

+
ab
v

∫ b

a
h
(

1− ab−ax
xv

)
f (b)g(x)+g(b) f (x)

x2 dx

≤ M(a,b)
∫ 1

0
[h(t)]2dt +N(a,b)

∫ 1

0
h(t)h(1− t)dt +

ab
v

∫ b

a

f (x)g(x)
x2 dx,

where M(a,b) and N(a,b) are given by (3.1) and (3.2) respectively.

Proof. Let f ,g be invariant harmonically convex functions with respect to an arbitrary non-negative

function h. Then

f
(

ab
a+ tv

)
≤ h(t) f (a)+h(1− t) f (b), ∀a,b ∈ K, t ∈ [0,1].

g
(

ab
a+ tv

)
≤ h(t)g(a)+h(1− t)g(b), ∀a,b ∈ K, t ∈ [0,1].

Now, using 〈x1− x2,x3− x4〉 ≥ 0,(x1,x2,x3,x4 ∈ R) and x1 < x2, x3 < x4, we have

f
(

ab
a+ tv

)
[h(t)g(a)+h(1− t)g(b)]+g

(
ab

a+ tv

)
[h(t) f (a)+h(1− t) f (b)]

≤ [h(t) f (a)+h(1− t) f (b)][h(t)g(a)+h(1− t)g(b)]+ f
(

ab
a+ tv

)
g
(

ab
a+ tv

)



48 Asrifa Sultana and V.Vetrivel

and we obtain

g(a)h(t) f
(

ab
a+ tv

)
+g(b)h(1− t) f

(
ab

a+ tv

)
+ f (a)h(t)g

(
ab

a+ tv

)
+ f (b)h(1− t)g

(
ab

a+ tv

)
≤ [h(t)]2 f (a)g(a)+ [h(1− t)]2 f (b)g(b)+h(t)h(1− t)[ f (a)g(b)+ f (b)g(a)]

+ f
(

ab
a+ tv

)
g
(

ab
a+ tv

)

Integrating with respect to t over the interval [0,1], we have

g(a)
∫ 1

0
h(t) f

(
ab

a+ tv

)
dt +g(b)

∫ 1

0
h(1− t) f

(
ab

a+ tv

)
dt

+ f (a)
∫ 1

0
h(t)g

(
ab

a+ tv

)
dt + f (b)

∫ 1

0
h(1− t)g

(
ab

a+ tv

)
dt

≤ f (a)g(a)
∫ 1

0
[h(t)]2dt + f (b)g(b)

∫ 1

0
[h(1− t)]2dt

+[ f (a)g(b)+ f (b)g(a)]
∫ 1

0
h(t)h(1− t)dt

+
∫ 1

0
f
(

ab
a+ tv

)
g
(

ab
a+ tv

)
dt

This implies

ab
v

∫ b

a
h
(

ab−ax
xv

)
f (a)g(x)+g(a) f (x)

x2 dx

+
ab
v

∫ b

a
h
(

1− ab−ax
xv

)
f (b)g(x)+g(b) f (x)

x2 dx

≤ M(a,b)
∫ 1

0
[h(t)]2dt +N(a,b)

∫ 1

0
h(t)h(1− t)dt +

ab
v

∫ b

a

f (x)g(x)
x2 dx,

which is the required result.

Theorem 4. For v,w ∈ Rn \{0}, let K ⊂ Rn \{0} be a invariant harmonically convex set. For a,b ∈ K

with a < b, let there exists vectors v,w ∈ Rn \{0} with v+w = 0, such that

a+ tv =

{
a, if t = 0;
b if t = 1,

and b+ tw =

{
b, if t = 0;
a if t = 1.
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Let f : K→ R be an invariant harmonically convex function on the interior (K◦) of K with respect to an

arbitrary non-negative function h : [0,1]→ R. If f ∈ L[a,b], then

f
(

2ab
a+b

)
ab
v

∫ b

a

g(x)
x2 dx+g

(
2ab

a+b

)
ab
v

∫ b

a

f (x)
x2 dx

≤ h
(

1
2

)[
ab
v

∫ b

a

f (x)g(x)
x2 dx+M(a,b)

∫ 1

0
h(t)h(1− t)dt

+N(a,b)
∫ 1

0
[h(t)]2dt

]
+

1
2h
(1

2

) f
(

2ab
a+b

)
g
(

2ab
a+b

)
.

Proof. Let f ,g be invariant harmonically convex functions with respect to an arbitrary non-negative

function h. With t = 1
2 and letting x = ab

a+tv and y = ab
b+tw , we have

f
(

2ab
a+b

)
≤ h
(

1
2

)[
f
(

ab
a+ tv

)
+ f
(

ab
b+ tw

)]
.

g
(

2ab
a+b

)
≤ h
(

1
2

)[
g
(

ab
a+ tv

)
+g
(

ab
b+ tw

)]
.

Now, using 〈x1− x2,x3− x4〉 ≥ 0,(x1,x2,x3,x4 ∈ R) and x1 < x2, x3 < x4, we have

h
(

1
2

)
f
(

2ab
a+b

)[
g
(

ab
a+ tv

)
+g
(

ab
b+ tw

)]
+h
(

1
2

)
g
(

2ab
a+b

)[
f
(

ab
a+ tv

)
+ f
(

ab
b+ tw

)]
≤

[
h
(

1
2

)]2[
f
(

ab
a+ tv

)
+ f
(

ab
b+ tw

)][
g
(

ab
a+ tv

)
+g
(

ab
b+ tw

)]
+ f
(

2ab
a+b

)
g
(

2ab
a+b

)

=

[
h
(

1
2

)]2[
f
(

ab
a+ tv

)
g
(

ab
a+ tv

)
+ f
(

ab
b+ tw

)
g
(

ab
b+ tw

)
+ f
(

ab
a+ tv

)
g
(

ab
b+ tw

)
+ f
(

ab
b+ tw

)
g
(

ab
a+ tv

)]
+ f
(

2ab
a+b

)
g
(

2ab
a+b

)
≤ 1

4

[
f
(

ab
a+ tv

)
g
(

ab
a+ tv

)
+ f
(

ab
b+ tw

)
g
(

ab
b+ tw

)
+[h(t) f (a)+h(1− t) f (b)][h(1− t)g(a)+h(t)g(b)]

+[h(1− t) f (a)+h(t) f (b)][h(t)g(a)+h(1− t)g(b)]
]
+ f
(

2ab
a+b

)
g
(

2ab
a+b

)
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Integrating with respect to t over the interval [0,1], we have

h
(

1
2

)
f
(

2ab
a+b

)∫ 1

0

[
g
(

ab
a+ tv

)
+g
(

ab
b+ tw

)]
dt

+h
(

1
2

)
g
(

2ab
a+b

)∫ 1

0

[
f
(

ab
a+ tv

)
+ f
(

ab
b+ tw

)]
dt

≤
[

h
(

1
2

)]2[∫ 1

0
f
(

ab
a+ tv

)
g
(

ab
a+ tv

)
dt

+
∫ 1

0
f
(

ab
b+ tw

)
g
(

ab
b+ tw

)
dt

+[ f (a)g(a)+ f (b)g(b)]
∫ 1

0
h(t)h(1− t)dt

+
[

f (a)g(b)+ f (b)g(a)
]∫ 1

0
[h(t)]2dt

]
+ f
(

2ab
a+b

)
g
(

2ab
a+b

)

From the above inequality, it follows that

f
(

2ab
a+b

)
ab
v

∫ b

a

g(x)
x2 dx+g

(
2ab

a+b

)
ab
v

∫ b

a

f (x)
x2 dx

≤ h
(

1
2

)[
ab
v

∫ b

a

f (x)g(x)
x2 dx+M(a,b)

∫ 1

0
h(t)h(1− t)dt

+N(a,b)
∫ 1

0
[h(t)]2dt

]
+

1
2h
(1

2

) f
(

2ab
a+b

)
g
(

2ab
a+b

)
,

which is the required result.

Corollary 4. Under the assumptions of Theorem 4 with h(t) = t, we have

f
(

2ab
a+b

)
ab
v

∫ b

a

g(x)
x2 dx+g

(
2ab

a+b

)
ab
v

∫ b

a

f (x)
x2 dx

≤ ab
2v

∫ b

a

f (x)g(x)
x2 dx+

1
12

M(a,b)

+
1
6

N(a,b)+ f
(

2ab
a+b

)
g
(

2ab
a+b

)
.

where M(a,b) and N(a,b) are given by (3.1) and (3.2), respectively.
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Corollary 5. Under the assumptions of Theorem 4 with h(t) = t p(1− t)q where p,q >−1, we have

f
(

2ab
a+b

)
ab
v

∫ b

a

g(x)
x2 dx+g

(
2ab

a+b

)
ab
v

∫ b

a

f (x)
x2 dx

≤ 1
2p+q

[
ab
v

∫ b

a

f (x)g(x)
x2 dx+

1
6

M(a,b)

+
1
3

N(a,b)
]
+2p+q−1 f

(
2ab

a+b

)
g
(

2ab
a+b

)
.

where M(a,b) and N(a,b) are given by (3.1) and (3.2), respectively.

Corollary 6. Under the assumptions of Theorem 4 with h(t) = ts, we have

f
(

2ab
a+b

)
ab
v

∫ b

a

g(x)
x2 dx+g

(
2ab

a+b

)
ab
v

∫ b

a

f (x)
x2 dx

≤ 1
2s

[
ab
v

∫ b

a

f (x)g(x)
x2 dx+

1
6

M(a,b

+
1
3

N(a,b)
]
+2s−1 f

(
2ab

a+b

)
g
(

2ab
a+b

)
.

where M(a,b) and N(a,b) are given by (3.1) and (3.2), respectively.

4 Conclusion

We have introduced a new class of harmonic convex functions with respect to an arbitrary non-negative

function h, which is called invariant h- harmonic convex functions. We have derived several new

Hermite-Hadamard type integral inequalities for invariant h-harmonic functions and the product of two

invariant h-harmonic convex functions.discussed some special cases. Some special cases are discussed,

which can be obtained from our main results.

References

1. G. D. Anderson, M. K. Vamanamurthy and M. Vuorinen. Generalized convexity and inequalities. J.

Math. Anal. Appl. 335 (2007), 1294-1308.

2. M. U. Awan, M. A. Noor, M. V. Mihai and K. I. Noor, Inequalities associated with invariant har-

monically h-convex functions, Appl. Math. Inform. Sci. 11(6) (2017), 1575-1583.



52 Asrifa Sultana and V.Vetrivel

3. G. Cristescu and L. Lupsa. Non-connected Convexities and Applications, Kluwer Academic Pub-

lisher, Dordrechet, Holland, (2002).

4. C. Hermite, Sur deux limites d’une intgrale dfinie. Mathesis, 3 (1883), 82.

5. J. Hadamard. Etude sur les proprietes des fonctions entieres e.t en particulier dune fonction consid-

eree par Riemann, J. Math. Pure and Appl., 58 (1893), 171-215.

6. I. Iscan. Hermite-Hadamard type inequalities for harmonically convex functions. Hacet, J. Math.

Stats., 43(6) (2014), 935-942.

7. S. N. Mishra and P. K. Das, Some results associated with Hermite-Hadamard type inequalities in

invariant harmonic convex set, Global J. Pure Appl. Math., 13(4) (2017), 1241-1248.

8. C. P. Niculescu and L. E. Persson. Convex Functions and Their Applications, Springer-Verlag, New

York, (2006).

9. M. A. Noor, K. I. Noor, M. U. Awan and S. Costache. Some integral inequalities for harmonically

h-convex functions. U.P.B. Sci. Bull. Serai A, 77(1) (2015), 5-16.

10. M. A. Noor, K. I. Noor and S. Iftikhar, Some Newton’s type inequalities for harmonic convex func-

tions, J. Adv. Mathe. Stud., 9(1) (2016), 07-16.

11. M. A. Noor, K. I. Noor, S. Iftikhar and K. Al-Bany, Inequalities for MT -harmonic convex functions,

J. Adv. Math. Stud., 9(2) (2016), 194-207.

12. M. A. Noor, K. I. Noor and S. Iftikhar, Hermite-Hadamard inequalities for harmonic nonconvex

functions, MAGNT Research Report, 4(1) (2016), 24-40.

13. M. A. Noor, K. I. Noor and S. Iftikhar, Integral inequalities for differentiable relative harmonic

preinvex functions, TWMS J. Pure Appl. Math., 7(1) (2016), 3-19.



Journal of Orissa Mathematical Society 53

14. M. A. Noor, K. I. Noor, S. Iftikhar and F. Safdar, Integral inequalities for relative harmonic (s,η)-

convex functions, Appl. Math. Comput. Sci., 1(1) (2016), 2734.

15. M. A. Noor, K. I. Noor and S. Iftikhar, Inequalities via strongly p-harmonic log-convex functions,

J. Nonlinear Func. Anal., 2017 (2017), Article ID 20.

16. M. A. Noor, K. I. Noor and S. Iftikhar, Harmonic beta-preinvex functions and inequalities, Int. J.

Anal. Appl. (13)(2) (2017), 144-160.

17. M. A. Noor, K. I. Noor, S. Iftikhar and C. Ionescu, Hermite-Hadamard inequalities for co-ordinated

harmonic convex functions, U.P.B. Sci. Bull., Ser: A, 79(1) (2017).

18. J. Pecaric, F. Proschan, and Y. L. Tong. Convex Functions, Partial Orderings and Statistical Appli-

cations. Acdemic Press, New york, (1992).

19. H. N. Shi and Zhang, Some new judgement theorems of Schur geometric and Schur harmonic con-

vexities for a class of symmetric functions, J. Inequal. Appl., 527 (2013).





Journal of Orissa Mathematical Society ISSN: 0975-2323
Vol. 36, No. 01-02, 2017, 55-60

Next Generation Newton-Type Computational
Methods with Cubic Convergence Rates

Ram U. Verma∗

Abstract

Recently, Verma [3] introduced several new classes of hybrid-type Newton’s methods,

which are unprecedented to one of the most popular computational methods over three cen-

turies. These models outperform most of the traditional Newton’s methods and its variants

in the literature. In this paper, we prove successfully the cubic convergence rate for next

generation Newton type methods by an analytical method, which is quite consistent with

our numerical calculations as well. We consider this next generation Newton type methods,

for n = 0, 1, 2, · · ·,

xn+1 = xn−
6 f (xn)[ f ′′(xn)]

2

6 f ′(xn)[ f ′′(xn)]2−3[ f ′′(xn)]2 f (xn)+ f ′′′(xn)[ f (xn)]2
,

where x0 is an initial point and f is a real-valued continuously differentiable function.
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Keywords: Newton’s method, Hybrid Newton-type methods, Convergence rates, Cubic convergence

rate.
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1 Introduction

Recently, Verma [2] introduced a class of new Newton-type methods, which outperform most of the tra-

ditional Newton’s methods and its variants in the literature. The convergence rate is higher than three,

while the computational cost is nominal when comparing with other computational methods in the lit-

erature. We have introduced several classes of hybrid Newton-type methods to the context of solving

polynomial equations and beyond, which have convergence rates ranging from super-quadratic to three

or more (based on analytical as well as numerical methods), while they work at lower computational

cost. These are based on the principle of zooming the graphs of polynomial functions that are deformed

after each derivative procedure, for example, the graph of a cubic function is deformed to a quadratic and

then to a line. This principle unlike Newton’s methods (which are based on the secant-tangent methods)

outperforms the secant-tangent methods. Since our analysis and findings are based on including just

four decimal places, the picture will be more clearer by including more decimal places. To the best our

knowledge, the general framework for the higher-order derivative Newton-type methods and its applica-

tions is new, and there is no evidence of any other publication(s) available in the literature by applying

the zooming principle.

In this paper, we investigate and establish the cubic convergence analysis for (1.1), which would be a

major step for this method in terms of applications to other Newton-like methods and beyond (includ-

ing interdisciplinary research). We consider this next generation Newton type methods, for n = 0, 1, 2, · · ·,

xn+1 = xn−
6 f (xn)[ f ′′(xn)]

2

6 f ′(xn)[ f ′′(xn)]2−3[ f ′′(xn)]2 f (xn)+ f ′′′(xn)[ f (xn)]2
, (1.1)

where x0 is an initial point and f is a real-valued continuously differentiable function with f ′(xn), f ′′(xn)

and f ′′′(xn) non-zero.
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2 Cubic Convergence Analysis for Model (1.1)

In this section, we prove and examine the cubic convergence analysis for a class of next generation New-

ton type methods (1.1). We also compare our finding based on numerical calculations with other existing

computational methods in the literature.

Theorem 1. Consider the following equation

f (x) = 0, (2.2)

where f is a real-valued continuously differentiable function with f ′(xn), f ′′(xn) and f ′′′ f (xn) non-zero.

Then the next generation Newton type model (1.1) has the cubic convergence rate.

Proof. Let a be a root of f (x) = 0, where f is thrice continuously differentiable in the neighborhood of

a and xn. Moreover, suppose that

K0 := | −2 f ′(a) f ′′′(a)−3[ f ′′(a)]2)
12[ f ′(a)]2

|

exists and is finite.

Then by Taylor’s theorem, we have

0 = f (a) = f (xn)+ f ′(xn)(a− xn)+
1
2

f ′′(xn)(a− xn)
2 +

1
6

f ′′′(ζ )(a− xn)
3, (2.3)

or

0 = f (a) = f (xn)+ f ′(xn)(a− xn)+
1
2

f ′′(η)(a− xn)
2. (2.4)
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Multiply (2.2) by 2 f ′(xn) and (2.3) by f ′′(xn)(a− xn), and then subtract in the following manner:

0 = 2 f (xn) f ′(xn)+2[ f ′(xn)]
2(a− xn)+ f ′(xn) f ′′(xn)(a− xn)

2

+
1
3

f ′(xn) f ′′′(ζ )(a− xn)
3

− f ′′(xn)(a− xn)[ f (xn)+ f ′(xn)(a− xn)+
1
2

f ′′(η)(a− xn)
2].

Thus, we have

0 = 2 f (xn) f ′(xn)+{2[ f ′(xn)]
2− f (xn) f ′′(xn)}(a− xn)

+{ f ′(xn) f ′′(xn)− f ′(xn) f ′′(xn)}(a− xn)
2

+{1
3

f ′(xn) f ′′′(ζ )− 1
2

f (xn) f ′′(xn) f ′′(η)}(a− xn)
3.

As we notice that the coefficient of (a− xn)
2 is zero, we find that

0 = 2 f (xn) f ′(xn)+{2[ f ′(xn)]
2− f (xn) f ′′(xn)}(a− xn)

+{1
3

f ′(xn) f ′′′(ζ )− 1
2

f (xn) f ′′(xn) f ′′(η)}(a− xn)
3.

This implies that

a− xn =−
2 f (xn) f ′(xn)

2[ f ′(xn)]2− f (xn) f ′′(xn)
− 2 f ′(xn) f ′′′(ζ )−3 f ′′(xn) f ′′(η)

6(2[ f ′(xn)]2− f (xn) f ′′(xn))
(a− xn)

3.

Next, applying (1.1), we arrive at

a− xn+1 =
6 f (xn)[ f ′′(xn)]

2

6 f ′(xn)[ f ′′(xn)]2−3[ f ′′(xn)]2 f (xn)+ f ′′′(xn)[ f (xn)]2

− 2 f (xn) f ′(xn)

2[ f ′(xn)]2− f (xn) f ′′(xn)

−2 f ′(xn) f ′′′(ζ )−3 f ′′(xn) f ′′(η)

6(2[ f ′(xn)]2− f (xn) f ′′(xn))
(a− xn)

3, (2.5)
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where ζ and η are real numbers lying between a and xn.

Next, we find the limits of the expressions and the limit of coefficients of (a−xn)
3, respectively, in (2.4)

on the right hand side as xn→ a as follows:

6 f (xn)[ f ′′(xn)]
2

6 f ′(xn)[ f ′′(xn)]2−3[ f ′′(xn)]2 f (xn)+ f ′′′(xn)[ f (xn)]2

− 2 f (xn) f ′(xn)

2[ f ′(xn)]2− f (xn) f ′′(xn)
→ 0,

and

−2 f ′(xn) f ′′′(ζ )−3 f ′′(xn) f ′′(η)

6(2[ f ′(xn)]2− f (xn) f ′′(xn))
→ −2 f ′(a) f ′′′(a)−3 f ′′(a) f ′′(a)

12[ f ′(a)]2

Now, if we take a little larger

K > | −2 f ′(a) f ′′′(a)−3[ f ′′(a)]2)
12[ f ′(a)]2

|,

i.e.,

K > K0.

Then taking the absolute value of both sides of (2.4) and we can replace the absolute value coefficient by

its upper bound for

| a− xn+1 |≤ K | a− xn |3 .

Example 1. Next, we consider an example on comparison of method (1.1) with other existing Newton-

type methods in the literature. Let f (x) = x3−2x−5, f ′(x) = 3x2−2 and f ′′(x) = 6x. Let us start with
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initial point x0 = 2 based on the change of the values of the function. Then for n = 0, we have

x1 = 2.0951 (Verma (1.1))

x1 = 2.10 (Newton’s Method)

x1 = 2.0947 (Householder’s Method)

x1 = 2.0945 (Halley’s Method)

Remark 1. The convergence rate for the methods (1.1) can also be determined using (COC) or (ACOC)

given by

ξ1 = ln
( | xn+1− x∗ |
| xn− x∗ |

)
/ln
( | xn− x∗ |
| xn−1− x∗ |

)
and

ξ2 = ln
( | xn+1− xn |
| xn− xn−1 |

)
/ln
( | xn− xn−1 |
| xn−1− xn−2 |

)
.
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This paper studies the degree of approximation of functions by Cesaro means of their

Fourier series in Besov space.

2010 AMS Subject Classification: 40 (c).

Keywords: Banach space, Holder space, Besov space.

1 Definitions

Modulus of Continuity:

Let A = R,R+, [a,b]⊂ R or T (which usually taken to be R with identification of points modulo 2π ).

The modulus of continuity w( f , t) = w(t) of a function f on A can be defined as

w(t) = w( f , t) = sup
|x−y|≤t
x,y∈A

| f (x)− f (y)|, t ≥ 0
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The kth order modulus of smoothness of a function f : A−→ R is defined by

wk( f , t) = sup
0<h≤t

{{sup |∆k
h( f ,x)| : x,x+ kh ∈ A}}, t ≥ 0 (1.1)

where ∆
k
h( f ,x) =

k

∑
i=0

(−1)k−i
(

k
i

)
f (x+ ih),k ∈ N (1.2)

For k = 1,w1( f , t) is called the modulus of continuity of f . The function w is continuous at t = 0 if

and only if f is uniformly continuous on A, that is f ∈ C̃(A). The kth order modulus of smoothness of

f ∈ Lp(A),0 < p < ∞ or of f ∈ C̃(A), ifp = ∞ is defined by

wk( f , t)p = sup
0<h≤t

‖∆k
h( f , .)‖p, t ≥ 0 (1.3)

if p≥ 1,k = 1, then w1( f , t)p = w( f , t)p is a modulus of continuity (or integral modulus of continuity).

If p = ∞,k = 1 and f is continous then wk( f , t)p reduces to modulus of continuity w1( f , t) or w( f , t).

Lipschitz Space:

If f ∈ C̃(A) and

w( f , t) = O(tα),0 < α ≤ 1 (1.4)

then we write f ∈ Lipα . If w( f , t) = o(t) as t→ 0+ (in particular (1.4) holds for α > 1) then f reduces

to a constant.

If f ∈ Lp(A),0 < p < ∞ and

w( f , t)p = O(tα),0 < α ≤ 1 (1.5)

then we write f ∈ Lip(α, p),0 < p < ∞,0 < α ≤ 1. The case α > 1 is of no interest as the function

reduces to a constant, whenever

w( f , t)p = o(t) as t→ 0+ (1.6)

We note that if p = ∞ and f ∈C(A) then Lip (α, p) class reduces to Lip α class.

Generalized Lipschitz Space:
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Let α > 0 and suppose that k = [α]+1. For f ∈ Lp(A),0 < p≤ ∞, if

wk( f , t)p = O(tα), t > 0 (1.7)

then we write

f ∈ Lip∗(α, p),α > 0,0 < p≤ ∞ (1.8)

and say that f belongs to generalized Lipschitz space. The seminorm is then

| f |Lip∗(α,Lp) = sup
t>0

(
t−αwk( f , t)p

)
.

It is known ([4], p-52) that the space Lip∗(α,Lp) contains Lip(α,Lp). For 0<α < 1 the spaces coincide,

(for p = ∞, it is necessary to replace L∞ by C̃ of uniformly continuous function on A). For 0 < α < 1

and p = 1 the space Lip∗(α,Lp) coincide with Lipα.

For α = 1, p = ∞, we have

Lip(1,C̃) = Lip 1 (1.9)

but

Lip∗(1,C̃) = Z (1.10)

is the Zygmund space[8], which is characterised by (1.7) with k = 2.

Hα Space [3]:

For 0 < α ≤ 1, let

Hα = { f ∈C2π : w( f , t) = O(tα)} (1.11)

It is known [3] that Hα is a Banach space with the norm ‖.‖α defined by

‖ f‖α = ‖ f‖c + sup
t>0

t−αw(t),0 < α ≤ 1 (1.12)

‖ f‖0 = ‖ f‖c

and Hα ⊆ Hβ ⊆C2π ,0 < β ≤ α ≤ 1 (1.13)
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H(α,p) Space:

For 0 < α ≤ 1, let

H(α,p) = { f ∈ Lp[0,2π] : 0 < p≤ ∞,w( f , t)p = O(tα)} (1.14)

and introduce the norm ‖.‖(α,p) as follows

‖ f‖(α,p) = ‖ f‖p + sup
t>0

t−αw( f , t)p, 0 < α ≤ 1 (1.15)

‖ f‖(0,p) = ‖ f‖p

It is known [3] that H(α,p) is a Banach space for p≥ 1 and a complete p-normed space for 0 < p < 1.

Also

H(α,p) ⊆ H(β ,p) ⊆ Lp, 0 < β ≤ α ≤ 1 (1.16)

Note that H(α,∞) is the space Hα defined above.

For study of degree of approximation problems the natural way to proceed to consider with some

restrictions on some modulus of smoothness as prescribed in Hα and H(α,p) spaces. As we have seen

above only a constant function satisfies Lipschitz condition for α > 1. However for generalized Lipschitz

class there is no such restriction on α . We required a finer scale of smoothness than is provided by

Lipschitz class. For each α > 0 Besov developed a remarkable technique for restricting modulus of

smoothness by introducing a third parameter q (in addition to p and α) and applying α,q norms (rather

than α,∞ norms ) to the modulus of smoothness wk( f , .)p of f .

Besove Space:

Let α > 0 be given and let k = [α]+1. For 0 < p,q≤∞ the Besove space ([4], p.54) Bα
q (Lp) is defined

as follows:

Bα
q (Lp) = { f ∈ Lp : | f |Bα

q (Lp) = ‖wk( f , .)‖(α,q) is finite}

where

‖wk( f , .)‖α,q =


(∫

∞

0 (t−αwk( f , t)p)
q dt

t

) 1
q , 0 < q < ∞ (1.17)

sup
t>0

t−αwk( f , t)p, q = ∞ (1.18)
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It is known ([4], p.55) that ‖wk( f , .)‖α,q is a seminorm if 1 ≤ p,q ≤ ∞ and a quasi-seminorm in other

cases.

The Besov norm for Bα
q (Lp) is

‖ f‖Bα
q (Lp) = ‖ f‖p +‖wk( f , .)‖(α,q) (1.19)

It is known ( [7], p.237) that for 2π-periodic function f , the integral
∫

∞

0
in (1.18) is replaced by

∫
π

0
.

We know ([4], p.56, [7], p.236) the following inclusion relations.

(I) For fixed α and p

Bα
q (Lp)⊂ Bα

q1
(Lp), q < q1

(II) For fixed p and q

Bα
q (Lp)⊂ Bβ

q (Lp), β < α

(III) For fixed α and q

Bα
q (Lp)⊂ Bα

q (Lp1), p1 < p

Special Cases of Besov Space:

For q = ∞,Bα
∞(Lp),α > 0, p≥ 1 is same as Lip∗(α,Lp) the generalized Lipschitz space and the corre-

sponding norm ‖.‖β α
∞ (Lp) is given by

‖ f‖Bα
∞(Lp) = ‖ f‖p + sup

t>0
t−αwk( f , t)p (1.20)

For every α > 0 with k = [α]+1,

For the special case when 0 < α < 1,Bα
∞(Lp) space reduces to H(α,p) space due to Das, Ghosh and

Ray[3] and the corresponding norm is given by

‖ f‖Bα
∞(Lp) = ‖ f‖(α,p) = ‖ f‖p + sup

t>0
t−αw( f , t)p,0 < α < 1 (1.21)

For α = 1, the norm is given by

‖ f‖B1
∞(Lp) = ‖ f‖p + sup

t>0
t−1w2( f , t)p (1.22)
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Note that ‖ f‖B1
∞(Lp) is not same as ‖ f‖(1,p) and the space B1

∞(Lp) includes the space H(1, p), p ≥ 1. If

we further specialize by taking p = ∞, Bα
∞(L∞),0 < α < 1, coincides with Hα space due to Prossodorf[6]

and the norm is given by

‖ f‖Bα
∞(L∞) = ‖ f‖α = ‖ f‖c + sup

t>0
tαw( f , t),0 < α < 1 (1.23)

For α = 1, p = ∞, the norm is given by

‖ f‖B1
∞(L∞)

= ‖ f‖c + sup
t>0

t−1w2( f , t),α = 1 (1.24)

which is different from ‖ f‖1 and B1
∞(L∞) includes the H1 space.

2 Introduction

Let f be a 2π periodic function and f ∈ Lp[0,2π], p≥ 1. The Fourier series of f at x is given by

1
2

a0 +
∞

∑
n=1

(an cosnx+bn sinnx) =
∞

∑
n=0

An(x)

In the case 0 < p < 1, we can still regard it as the Fourier series of f by further assuming f (t)cosnt and

f (t)sinnt are integrable.

Prossdorff [6] first obtained the following on approximation of functions in Hα space using Fejer mean

of Fourier series.

Theorem A:

Let f ∈ Hα(0 < α ≤ 1) and 0≤ β < α ≤ 1. Then

‖σn( f )− f‖β = O(1)


1

nα−β
, 0 < α < 1

(
logn

n

)1−β

, α = 1,

where σn( f ) is the Fejer means of the Fourier series of f .The case β = 0 of Theorem A is due to Alexists

[1]. Chandra [2] obtained the generalisation of Theorem A in the Nörlund (N, p) and (N, p) transform

set up.
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Later Mohapatra and Chandra [5] studied the problem by matrix means and obtained the above results

as corollaries. Das, Ghosh and Ray[3] further generalised the work by studying the problem for functions

in H(α, p) space (0 < α ≤ 1, p ≥ 1) by matrix means of their Fourier series in the generalised Hölder

metric.

In the present work we propose to study the degree of approximation of functions in Besov space

which is a generalisation of H(α, p) space.

We write

φx(u) = f (x+u)+ f (x−u)−2 f (x) (2.1)

Let Sn(x) = Sn( f ;x) denote the nth partial sum of the Fourier series. It is known ([9], Vol-I, p.50) that

Sn( f ;x)− f (x) =
1
π

∫
π

0
φx(u)Dn(u)du (2.2)

where the Dirichlet’s Kernel

Dn(u) =
1
2
+

n

∑
k=0

coskx =
sin
(
n+ 1

2

)
u

2sin u
2

(2.3)

Let σ
γ
n ( f ;x) denote the Cesaro mean (C,γ),γ > 0 of the Fourier series. Then

σ
γ
n ( f ;x) =

1
Aγ

n

n

∑
k=0

Aγ−1
n−kSk( f ;x) (2.4)

Where Aγ
n is given by the formula ([9] Vol-I, p.76)

∞

∑
n=0

Aγ
nxn = (1− x)−γ−1,γ >−1, |x|< 1 (2.5)

We know ([9], Vol.I, p.49) that

lγ
n(x) = σ

γ
n ( f ;x)− f (x) =

1
π

∫
π

0
φx(u)Kγ

n (u)du (2.6)

where,

Kγ
n (u) =

1
Aγ

n

n

∑
k=0

Aγ−1
n−kDk(u) (2.7)
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3 Main Result

Theorem: Let 0≤ β < α < 2. If f ∈ Bα
q (Lp), p≥ 1 and 1 < q≤ ∞, then

(i) For 0 < γ < 1

‖lγ
n(.)‖Bβ

q (Lp)
= O(1)


1
nγ , α−β − 1

q > γ

1

nα−β− 1
q
, α−β − 1

q < γ

(logn)1− 1
q

nγ , α−β − 1
q = γ

(ii) For γ ≥ 1

‖lγ
n(.)‖Bβ

q (Lp)
= O(1)


1
n , α−β − 1

q > 1
1

nα−β− 1
q
, α−β − 1

q < 1

(logn)1− 1
q

n , α−β − 1
q = 1

Note: The case 0 < q≤ 1, needs different argument, to be consider separately.

We need the following additional notations for the proof of the theorem.

Φ(x, t,u) =

{
φx+t(u)−φx(u), 0 < α < 1
φx+t(u)−φx−t(u)−2φx(u), 1≤ α < 2

(3.1)

For k = [α]+1, we have for p≥ 1

wk( f , t)p =

{
w1( f , t)p, 0 < α < 1
w2( f , t)p, 1≤ α < 2

(3.2)

For γ > 0, we write

Lγ
n(x, t) =

{
lγ
n(x+ t)− lγ

n(x), 0 < α < 1
lγ
n(x+ t)+ lγ

n(x− t)−2lγ
n(x), 1≤ α < 2

(3.3)

Using (2.6) and (3.1) respectively for the expressions lγ
n(x) and Φ(x, t,u), we have

Lγ
n(x, t) =

1
π

∫
π

0
Φ(x, t,u)Kγ

n (u)du (3.4)

Using definition of wk( f , t)p and (3.3), we have

wk(lγ
n , t)p = ‖Lγ

n(., t)‖p (3.5)

We need the following lemmas to prove the theorem.

4 Lemmas:
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Lemma 1: Let 1≤ p≤ ∞ and 0 < α < 2. If f ∈ Lp[0,2π], then for 0 < t,u≤ π

(i) ‖Φ(., t,u)‖p ≤ 4wk( f , t)p

(ii) ‖Φ(., t,u)‖p ≤ 4wk( f ,u)p

(iii) ‖φ .(u)‖p ≤ 2wk( f ,u)p,

where k = [α]+1.

Proof: Case 0 < α < 1.

Clearly k = [α]+1 = 1. By virtue of (2.1)

Φ(x, t,u) = φx+t(u)−φx(u), can be written as

Φ(x, t,u) =


{ f (x+ t +u)− f (x+u)}+{ f (x+ t−u)− f (x−u)}
−2{ f (x+ t)− f (x)} (4.1)
{ f (x+ t +u)− f (x+ t)}+{ f (x−u+ t)− f (x+ t)}
−{ f (x+u)− f (x)}−{ f (x−u)− f (x)} (4.2)

Applying Minkowoski’s inequality to (4.1), we get for p≥ 1

‖Φ(., t,u)‖p ≤ ‖ f (.+ t +u)− f (.+u)‖p +‖ f (.+ t−u)− f (.−u)‖p +2‖ f (.+ t)− f (.)‖p

≤ 4w1( f , t)p, 0 < α < 1

Similarly applying Minkowoski’s inequality to (4.2), we get for p≥ 1

‖Φ(., t,u)‖p ≤ 4w1( f ,u)p.

Case 1≤ α < 2.

Clearly k = [α]+1 = 2. By virtue of (2.1)

Φ(x, t,u) = φx+t(u)+φx−t(u)−2φx(u), can be written as

Φ(x, t,u) =


{ f (x+ t +u)+ f (x+ t−u)−2 f (x+ t)}+{ f (x− t +u)+ f (x− t−u)
−2 f (x− t)}−2{ f (x+u)+ f (x−u)−2 f (x)} (4.3)
{ f (x+ t +u)+ f (x− t +u)−2 f (x+u)}+{ f (x+ t−u)+ f (x− t−u)
−2 f (x−u)}−2{ f (x+ t)+ f (x− t)−2 f (x)} (4.4)
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Applying Minkowski’s inequality to (4.3), we obtain for p≥ 1

‖Φ(., t,u)‖p ≤ ‖ f (.+ t +u)+ f (.+ t−u)−2 f (.+ t)‖p

+‖ f (.− t +u)+ f (.− t−u)−2 f (.− t)‖p

+2‖ f (.+u)+ f (.−u)−2 f (.)‖p

≤ 4w2( f ,u)p

Using (4.4) and proceeding as above, we get

‖Φ(., t,u)‖p ≤ 4w2( f , t)p

this completes the proof of part(i) and 9ii). We omit the proof of (iii) as it is trivial.

Lemma 2: Let 0 < α < 2.Suppose that 0≤ β < α . If f ∈ Bα
q (Lp), p≥ 1,1 < q < ∞, then for γ > 0

(i)
∫

π

0
|Kγ

n (u)|
(∫ u

0

‖Φ(., t,u)‖q
p

tβq

dt
t

) 1
q

du = O(1)
{∫

π

0

(
uα−β |Kγ

n (u)|
) q

q−1
du
}1− 1

q

(ii)
∫

π

0
|Kγ

n (u)|
(∫

π

u

‖Φ(., t,u)‖q
p

tβq

dt
t

) 1
q

du = O(1)
{∫

π

0

(
uα−β+ 1

q |Kγ
n (u)|

) q
q−1

du
}1− 1

q

Proof: Applying Lemma 1(i), we have∫
π

0
|Kγ

n (u)|
(∫ u

0

‖Φ(., t,u)‖q
p

tβq+1 dt
)1/q

du

= O(1)
∫

π

0
|Kγ

n (u)|
{∫ u

0

(
wk( f , t)p

tα

)q

t(α−β )q dt
t

}1/q

du

= O(1)
∫

π

0
|Kγ

n (u)|uα−β du
{∫ u

0

wk( f , t)p

tα

dt
t

}1/q

= O(1)
∫

π

0
|Kγ

n (u)|uα−β du

by Second Mean Value theorem and by definition of Besov Space.

Applying Holders inequality

= O(1)
{∫

π

0

(
|Kγ

n (u)|uα−β

) q
q−1

du
}1− 1

q
(∫

π

0
1qdu

) 1
q

= O(1)
{∫

π

0

(
|Kγ

n (u)|uα−β

) q
q−1

du
}1− 1

q
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For the second part, applying Lemma 1(ii), we get∫
π

0
|Kγ

n (u)|du
{∫

π

u

‖Φ(., t,u)‖q
p

tβq+1 dt
}1/q

= O(1)
∫

π

0
|Kγ

n (u)|wk( f ,u)pdu
(∫

π

u

dt
tβq+1

)1/q

= O(1)
∫

π

0
|Kγ

n (u)|wk( f ,u)pu−β du

= O(1)
∫

π

0

(
wk( f ,u)p

uα+ 1
q

)
uα−β+ 1

q |Kγ
n (u)|du

Applying Holder’s inequality

= O(1)
{∫

π

0

(
wk( f ,u)p

uα

)q du
u

} 1
q
{∫

π

0

(
uα−β+ 1

q |Kγ
n (u)|

) q
q−1

du
}1− 1

q

= O(1)
{∫

π

0

(
uα−β+ 1

q |Kγ
n (u)|

) q
q−1

du
}1− 1

q

by definition of Besov space.

Lemma 3: Let 0 < α < 2. Suppose that 0≤ β < α . If f ∈ Bα
q (Lp), p≥ 1 and q = ∞ then

sup
0<t≤u≤π

t−β
‖Φ(., t,u)‖p = O(uα−β ).

Proof: For 0 < t ≤ u≤ π , applying Lemma 1(i), we have

sup
t

0<t≤u≤π

t−β‖Φ(., t,u)‖p = sup
t

0<t≤u≤π

tα−β (t−α‖Φ(., t,u)‖p)

≤ 4uα−β sup
t
(t−αwk( f , t)p)

= O(uα−β ),by the hypothesis.

Next for 0 < u≤ t ≤ π , applying Lemma 1(ii), we get

sup
t

0<u≤t≤π

t−β‖Φ(., t,u)‖p ≤ 4wk( f ,u)p sup
t

0<u≤t≤π

t−B

≤ 4uα−β sup
u
(u−αwk( f ,u)p)

= O(uα−β ),by the hypothesis.

and this completes the proof.
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Lemma 4: Let the (C,γ) Kernel Kγ
n (u) of the Fourier series be defined as in (2.7). Then for −1 < γ <

1,0 < u≤ π

(i)

Kγ
n (u) =

{
O(n)
O(n−γu−1−γ)

and for γ ≥ 1 and 0 < u≤ π

(ii)

Kγ
n (u) =

{
O(n)
O(n−1u−2).

Proof Part(i) can be found in ([9], Vol.I,p.95). We omit the proof of (ii) as it can be proved by similar

argument.

5 Proof of the Theorem: We first consider the case 1 < q <∞. We have for p≥ 1, 0≤ β <α < 2,γ > 0.

‖lγ
n(.)‖Bβ

q(Lp)
= ‖lγ

n(.)‖p +‖wk(lγ
n , .)‖(β ,q) (5.1)

Applying Lemma 1(iii) in (2.6), we get

‖lγ
n(.)‖p ≤

1
π

∫
π

0
‖φ .(u)‖p|Kγ

n (u)|du

≤ 2
π

∫
π

0
|Kγ

n (u)|wk( f ,u)pdu (5.2)

At this stage, applying Holder’s inequality, we have

‖lγ
n(.)‖p ≤

2
π

{∫
π

0
(|Kγ

n (u)|u
α+ 1

q )
q

q−1 du
}1− 1

q
{∫

π

0

(
wk( f ,u)p

uα+ 1
q

)q

du
} 1

q

= O(1)
[∫

π

0
(|Kγ

n (u)|u
α+ 1

q )
q

q−1 du
]1− 1

q

,by definition of Besov Space

= O(1)
{∫ π

n

0
+
∫

π

π

n

}1− 1
q

= O(1)

[{∫
π/n

0

(
|Kγ

n (u)|u
α+ 1

q

) q
q−1

du
}1− 1

q

+

{∫
π

π/n

(
|Kγ

n (u)|u
α+ 1

q

) q
q−1

du
}1− 1

q
]

by the inequality (x+ y)r ≤ xr + yr for 0 < r ≤ 1

= O(1)[I + J], say (5.3)
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We shall consider the cases 0 < γ < 1 and γ ≥ 1 separately. We first study the case 0 < γ < 1, to proof

first part of the theorem.

Using Lemma 4(i), we have for 0 < γ < 1

I =
{∫

π/n

0

(
|Kγ

n (u)|u
α+ 1

q

) q
q−1

du
}1− 1

q

= O(n)
{∫

π/n

0
u

q
q−1 (α+ 1

q )du
}1− 1

q

= O(n)
(∫

π/n

0
u

q
q−1 (α+1)−1du

)1− 1
q

= O
(

1
nα

)
(5.4)

Using the second estimate of Lemma 4(i), we have for 0 < γ < 1

J =

{∫
π

π/n

(
|Kγ

n (u)|u
α+ 1

q

) q
q−1

du
}1− 1

q

= O
(

1
nγ

){∫
π

π/n
u

q
q−1(α+ 1

q−γ−1)du
}1− 1

q

= O
(

1
nγ

){∫
π

π/n
u

q
q−1 (α−γ)−1du
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(5.5)

From (5.3), (5.4) and (5.5) , we get

‖lγ
n(.)‖p = O(1)


1
nγ , α > γ

1
nα , α < γ

(logn)1− 1
q

nγ , α = γ

(5.6)
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Now
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} 1
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By repeated application of generalized Minkowski’s inequality, we have
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Applying Lemma 2, we have

‖wk(lγ
n , .)‖(β ,q) = O(1)

[{∫
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|Kγ

n (u)|uα−β

) q
q−1
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q
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α−β+ 1

q )
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}1− 1

q
]

= O(1)[I
′
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′
],say (5.7)
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We now proceed to estimate I
′
and J

′
when 0 < γ < 1. Writing

I
′
=

{[∫
π/n

0
+
∫

π
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](
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Applying Lemma 4(i), we get

I
′
1 = O(n)
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0
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q
q−1 (α−β )du

}1− 1
q

= O
(

1
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)
(5.9)

I
′
2 = O
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1
nγ

){∫
π

π/n
u

q
q−1 (α−β−γ−1)du

}1− 1
q

= O(1)


1
nγ , α−β − 1

q > γ

1

nα−β− 1
q
, α−β − 1

q < γ

(logn)1− 1
q

nγ , α−β − 1
q = γ

(5.10)

Collecting the results from (5.8), (5.9) and (5.10)

I
′
= O(1)


1
nγ , α−β − 1

q > γ

1

nα−β− 1
q
, α−β − 1

q < γ

(logn)1− 1
q

nγ , α−β − 1
q = γ

(5.11)

We have,
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0
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n (u)|u
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+
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q

= (J
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1 + J

′
2), say (5.12)
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Applying Lemma 4(i), we get

J
′
1 = O(n)

(∫
π/n

0
u

q
q−1 (α−β+ 1

q )du
)1− 1

q

= O(n)
(∫

π/n

0
u

q
q−1 (α−β+1)−1du

)1− 1
q

= O
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1
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)
(5.13)

J
′
2 = O
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1
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q−1 (α−β+ 1
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}1− 1

q

= O
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u

q
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q
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= O(1)


1
nγ , α−β > γ

1
nα−β

, α−β < γ

(logn)1− 1
q

nγ , α−β = γ

(5.14)

Collecting the results from (5.12), (5.13) and (5.14), we have

J
′
= O(1)


1
nγ , α−β > γ

1
nα−β

, α−β < γ

(logn)1−1/q

nγ , α−β = γ

(5.15)

Collecting the results from (5.7), (5.16) and (5.15), we have

‖wk(lγ
n , .)‖Bβ

q (Lp)
= O(1)


1
nγ , α−β − 1

q > γ

1

nα−β− 1
q
, α−β − 1
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(logn)1− 1
q
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(5.16)

From (5.6), (5.16) and (5.1), we get for 1 < q < ∞, p≥ 1,0≤ β < α < 2,0 < γ < 1

‖lγ
n(.)‖Bβ

q (Lp)
= O(1)


1
nγ , α−β − 1

q > γ

1

nα−β− 1
q
, α−β − 1

q < γ

(logn)1− 1
q

nγ , α−β − 1
q = γ

(5.17)
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Now we consider the case when q = ∞.
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n , .)‖(β ,∞) = sup
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Applying generalized Minkowski’s inequality
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Using lemma 4(i) for Kγ
n (u), it can be shown that
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1
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1
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logn
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(5.18)

From (5.2), we have for q = ∞
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π
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Applying lemma 4(i), it can be shown that
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n(.)‖p = O(1)
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1
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(logn)
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(5.19)
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From (5.18) and (5.19) we have for q = ∞

‖lγ
n(.)‖Bβ

∞(Lp)
= ‖lγ

n(.)‖p +‖wk(lγ
n , .)‖(β ,∞)

= O(1)


1
nγ , α−β > γ

1
nα−β

, α−β < γ(
logn
nγ

)
, α−β = γ

(5.20)

Collecting the results of (5.17) and (5.20), we have first part of the Theorem.

For second part of the theorem, proceeding as above and applying Lemma 4(ii) instead of Lemma 4(i)

at appropriate steps.

We can obtain for 1 < q < ∞, p≥ 1,0≤ β < α < 2 and γ ≥ 1

‖lγ
n(.)‖Bβ

q (Lp)
= O(1)


1
n , α−β − 1

q > 1
1

nα−β− 1
q
, α−β − 1

q < 1

(logn)1− 1
q

n , α−β − 1
q = 1

(5.21)

and for q = ∞, p≥ 1,0≤ β < α < 2

‖lγ
n(.)‖Bβ

∞(Lp)
= O(1)


1
n , α−β > 1

1
nα−β

, α−β < 1
logn

n , α−β = 1

(5.22)

The second part of the theorem follows from (5.21) and (5.22).
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1 Introduction

In this paper we consider simple and undirected graphs. Central vertices of a graph are of great

importance in facility location problem in a network. For basic definitions and terminologies we

refer to [21]. For any two vertices u and v in a graph G, the length of a shortest u − v path is

known as the distance between u and v and is denoted by d(u, v). The eccentricity of a vertex

v in G, denoted by e(v), is defined as the distance between v and a vertex farthest from v in G,

i.e., e(v) = max{d(v, u) : u ∈ V (G)}. The radius rad(G) and diameter diam(G) of graph G are

respectively the minimum and maximum eccentricity of the vertices, i.e., rad(G) = min{e(v) :

v ∈ V (G)} and diam(G) = max{e(v) : v ∈ V (G)}. A graph G is called a self-centered graph

if eccentricity of every vertex is the same. Further, G is called a d-self-centered graph if the

eccentricity of every vertex is d. A self-centered graph G is said to be a minimal self-centered

graph if it loses it self-centeredness property after removal of an arbitrary edge. Vertices having

minimum eccentricity in a graph G are called central vertices of the graph G. Vertices having

maximum eccentricity in a graph G are called peripheral vertices of the graph G.

For a graph G, the kth power of G, denoted by Gk, is the graph on same set of vertices where

any two vertices are adjacent if the distance between vertices (in G) is at most k. It may be

noted that we have 1 ≤ k ≤ d, where d is the diameter of the graph G, and for k = d, Gk is a

complete graph.

For graphs G1, G2, . . . , Gn, let V (G) = {(x1, x2, . . . , xn) : xi ∈ V (Gi)}. Let x = (x1, . . . , xn)

and y = (y1, . . . , yn) be two arbitrary elements in V (G). Then G is called

• Cartesian product of G1, G2, . . . , Gn, denoted by G = G12G22 . . .2Gn, whenever x ∼ y

if and only if xiyi ∈ E(Gi) for exactly one index i, 1 ≤ i ≤ n, and xj = yj for each index

j 6= i.

• Strong product of G1, G2, . . . , Gn, denoted by G = G1 � . . .�Gn, whenever x ∼ y if and
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only if xiyi ∈ E(Gi) or xi = yi, for every i, 1 ≤ i ≤ n.

• Tensor product of G1, G2, . . . , Gn, denoted by G = G1 ⊗ . . .⊗Gn, whenever x ∼ y if and

only if xiyi ∈ E(Gi) for each i, 1 ≤ i ≤ n.

• Co-normal product of G1, G2, . . . , Gn, denoted by G = G1 ∗G2 ∗ . . . ∗Gn, whenever x ∼ y

if and only if xi ∼ yi for some i ∈ {1, 2, . . . , n}.

The term self-centered graph was introduced by Capobianco [5] for the graph with central

ratio one, where central ratio of a graph G is |C(G)| ÷ |V (G)| and C(G) is the center of G.

Self-centered graphs were broadly studied and surveyed by many authors, see [3], [4] and [10].

An algorithm was discussed by Janakiraman etc. [11] to construct self-centered graphs from

trees. They also provided algorithms for the construction of self-centered graphs by adding

edges to a given non-self-centered graph. Huilgol etc. [6] discussed about cyclic edge extensions

and studied self-centeredness of cycle graphs by adding an edge. Klavžar et al. [12] introduced

a new family of graphs as r-almost self-centered (r-ASC) graphs if there are exactly two vertices

with eccentricity r+1 and the remaining vertices have eccentricity r. That is all but two vertices

are central. They also defined ASC index of a graph G as the minimum number of vertices to be

added to the graph G such that G is an induced subgraph of some ASC graph. Further, Klavžar

et al. [12] discussed embedding of any graph into some ASC graph and proposed constructions

for embedding of any graph into ASC graph of radius two. Later on, Klavžar et al. [13] defined

r-almost peripheral (r-AP) graphs if there is exactly one vertex with eccentricity r and the

remaining vertices have eccentricity r + 1. That is exactly one central vertex and the remaining

are peripheral vertices. Several demonstrations for embedding graphs into AP graphs of radius

r is discussed by them. The r-embedding index Φr(G) is defined as the minimum number of

vertices required to add to the graph G such that G is an induced subgraph of some r-AP graph.

Recently, Singh and Panigrahi [17] discussed the self-centeredness of strong product, co-normal
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product, and lexicographic product of graphs. The same authors, Singh and Panigrahi in [18],

checked the self-centeredness of tensor product of some special classes of graphs like cycles, wheel

graphs etc. with themselves and other graphs.

Zoran Stanic [19] was the first to study minimal self-centeredness property of graphs. The

author obtained all minimal self-centered graphs of order up to ten. In the year 1960, Ross

and Harary [16] provided necessary and sufficient condition for a graph to be square of a tree.

A. Mukhopadhayay [14] studied and discussed the square root of a given graph. Some other

results related to hamiltonicity, subdivision and circumference of square of graphs are discussed

by various authors, see [1, 2, 7, 8, 9, 15, 20]. In algebraic and spectral graph theory, power of

graphs has been widely studied and surveyed. Self-centeredness and minimal self-centeredness

property of power graphs and product of graphs were not studied before.

The paper is organized as follows. In section 2, we give some results regarding self-centeredness

of power of graphs. In the section 3, we check minimal self-centeredness of square of cycles and

then study the minimum number of edges to be deleted to destroy self-centeredness of C2
n.

Finally in section 4 we discuss minimal self-centeredness of different kind of product of cycles.

2 Self-Centeredness of Power of Graphs

In this section we study self-centeredness of power of graphs. Throughout this paper, let

u0, u1, u2, . . . , un−1 be the vertices of Cn and C2
n. For our convenience, let us call the edges

u0u1, u1u2, . . ., un−1u0 as the outer edges. Similarly we name the edges u0u2, u2u4, u4u6 . . . and

u1u3, u3u5,

u5u7, . . . as the inner edges of C2
n. It is easy to note that shortest path between any two vertices

of Ck
n mainly consists of inner edges and degree of every vertex in Ck

n is k + 2, where k is any

positive integer.

In the following we prove that power of any self-centered graph is a self-centered graph.
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Theorem 2.1. Let G be a d-self-centered graph. Then Gk is a dd/ke-self-centered graph, where

1 ≤ k ≤ d.

Proof. Since G is a d-self-centered graph, for every vertex u there exists a vertex v such that

d(u, v) = d, and let a path of length d between u and v be P : u = v1, v2, . . . , vd+1 = v. Now

in Gk, there exists a path P ′ which skips every vertex at a distance k in P starting from the

vertex u which is P ′ : u = v1, v1+k, . . . , v1+mk, vd+1 = v, where m = d dke − 1 when k divides d,

and m = d dke otherwise. It may be noted that the length of this path P ′ is dd/ke and hence the

result.

If G is not a self-centered graph but diam(G) = 2 then G2, being a complete graph, is self-

centered. In the next result we show that square of a non-self-centered graph may or may not

be self-centered graph.

Theorem 2.2. For any non-self-centered graph G with diam(G) ≥ 3 the following hold:

(i) G2 is a self-centered graph if diam(G) is even and diam(G)− rad(G) = 1.

(ii) G2 is not a self-centered graph if diam(G)− rad(G) ≥ 2.

Proof. It is known that if a graph is not a self-centered graph then it contains at least two

non-central vertices. Since diam(G) ≥ 3, there is no vertex x such that deg(x) = n − 1, where

x ∈ V (G) and |V (G)| = n. For if degree of vertex x is n− 1, diam(G) = 2, a contradiction. Let

eccentricity of vertex xi be ei. Now, for every xi there exists a vertex yi such that d(xi, yi) = ei

and Pi : xi = v0v1 . . . vei = yi is the shortest xi − yi path of length ei. Further, in G2, a path

of shortest length between xi and yi is given as P ′i : v0v2 . . . vei−2vei = yi when ei is even and

P ′i : v0v2 . . . vei−1vei = yi when ei is is odd. The length of the paths P ′i is dei/2e and thus

eccentricity of every vertex xi ∈ V (G2) is dei/2e. We can see that eccentricity of every vertex

in G2 is the same in (i) and not same in (ii), and hence the result.
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Corollary 2.1. Let G2 be the square of a graph G. Then we have following.

(i) If G is an r-ASC graph with r even then G2 is ( r2)-self-centered graph.

(ii) If G is an r-AP graph, where r is odd, then G2 is ( r+1
2 )-self-centered graph.

3 Minimal Self-centeredness of Power of Graphs

The simplest example of a minimal self-centered graph is complete graph Kn, n ≥ 3, where

deletion of any edge from Kn results into a non-self-centered graph. It is easy to show that

cycle Cn is a minimal self-centered graph as deletion of any edge gives path Pn and Pn is not

a self-centered graph. However, square of a cycle is not a minimal self-centered graph which is

the content of our next result.

Theorem 3.1. For any cycle Cn, n ≥ 6, the graph C2
n is not a minimal self-centered graph.

Proof. From Theorem 2.1, we get that C2
n is a k-self-centered graph, where k = dd2e and d = bn2 c.

We shall show that the graph C2
n is not a minimal self-centered graph. Let x = u0 ∈ V (C2

n).

Then there exists a vertex y = ud such that d(x, y) = k. First consider the case when n is

even. We have x = u0u2u4 . . . ud = y and x = u0u2 . . . ud−1ud = y as the shortest x − y paths

of length k, when d is even and odd, respectively. After deletion of any edge from these two

paths and using the fact that dCn(u0, ui) = dCn(u0, un−i) for i = 1, 2, . . . bn2 c, we get paths

x = u0un−2 . . . ud = y and x = u0u1u3 . . . ud = y of length k in C2
n, when d is even and odd,

respectively. This shows that the eccentricity of vertex u0 remains unchanged after deleting any

edge. Next, assume that both n and d are odd. Then for an arbitrary vertex u0 in C2
n, there

exists a vertex ud such that d(u0, ud) = k and the shortest u0 − ud path of length k given by

u0u2 . . . ud−1ud for which there also exists an alternate u0 − ud path given by u0u1u3 . . . ud of

the length k. It may be noted that once any edge is deleted from any path, an alternate path

of the same length maintains the eccentricity of the vertex u0.
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Finally consider the case when n is odd and d is even. Consider a vertex u0. Then there

exists a vertex ud in C2
n such that d(u0, ud) = k, and the shortest u0 − ud path of length k

is P : u0u2u4 . . . ud. After deleting any edge uiui+2 from P , we get a possible u0 − ud path

u0u2 . . . uiui+1ui+2 . . . ud of length k + 1. Thus, the eccentricity of the vertex u0 is incremented

by one. It may be noted that this does not affect the eccentricity of the vertices uj , where j

is odd, because for uj , the shortest path between uj and the vertex farthest from uj consists

of all odd indexed vertices. Thus, after deletion of an edge uiui+2, the resulting graph is not a

self-centered graph. It may be noted that if outer edges (edges lying on Cn) are deleted then

the graph still remains a self-centered graph, which does not satisfy the definition of minimal

self-centered graph.

It may be noted that a self-centered graph G has no pendant vertex [19]. On the contrary,

let d-self-centered graph G has a pendant vertex, say the vertex a. Here, eccentricity of evert

vertex in G is d. We will calculate eccentricity of the vertex a. Let b be the neighbour vertex of

a. Then e(a) = e(b) + 1 = d + 1 which gives a contradiction.

In the next two theorems N(G) denotes the minimum number of edges to be deleted from

a graph G such that the resultant graph is not a self-centered graph. In the next result, we

calculate the minimum number of edges to be deleted from C2
n such that the resulting graph is

not a self-centered graph.

Theorem 3.2. For any cycle Cn, n ≥ 6, we have

N(C2
n) =


1, if n is odd and d is even,

2, if n is even and d is even,

3, if n is odd and d is odd,

3, if n is even and d is odd.

Proof. Let u0, u1, . . . , un−1 be the vertices of Cn as well as of C2
n. We know that Cn is d-self-

centered and C2
n is k-self-centered graph, where d = bn2 c and k = dd2e, respectively. It is clear
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that in C2
n, shortest path between any two vertices mainly consists of inner edges(edges do not

lie on Cn). Now, we will consider following four cases.

Case 1. n is odd and d is even. In this case, for an arbitrary vertex u0 ∈ C2
n, there exist two

vertices ud and ud+1 such that d(u0, ud) = k = d(u0, ud+1). It may be easily seen that there is a

unique shortest path between the vertices u0 and ud and let this path be P : u0u2u4 . . . ud. Let

us delete some edge uiui+2 from this path. Since the path P contains inner edges, the length

of shortest u0 − ud path is incremented by one after deletion of an edge uiui+1. This changes

the eccentricity of the vertex u0 and thus in this case, C2
n is not a self-centered graph. If the

deleted edge does not lie on the shortest path between any pair of vertices, then this will not

affect the eccentricity of the vertex u0. One can see that there is no change in the eccentricity

of the vertices ul, l is odd, as no vertices with even indices lie on the shortest path between the

vertex ul and the vertex farthest from ul. Thus, in this case N(C2
n) = 1.

Case 2. Both n and d are even. For the given value of n and d, for an arbitrary vertex u0 in C2
n

there exists exactly one vertex ud such that d(u0, ud) = k. We have two u0 − ud paths of length

k given by P1 : u0u2u4 . . . ud and P2 : u0un−2un−4 . . . ud. If any two edges from these paths are

deleted, the resultant graph is not a self-centered graph as eccentricity of the vertex u0 is k + 1,

where as the eccentricity of the vertices with odd indices is k. It may also be noted that if the

deleted edge lie on the shortest path between an even indexed vertex and its eccentric vertex,

then the eccentricity of even indexed vertex is changed to k + 1. This gives that N(C2
n) = 2.

Case 3. Both n and d are odd. Consider an arbitrary vertex u0 whose eccentric vertex is ud. In

this case, as the value of n (or d) increases, the number of shortest u0− ud paths also increases.

We will find all such paths first. The simplest u0 − ud path is P : u0u2u4 . . . ud−1ud of the
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length k. The distance between every vertex in the path is two except the vertices ud−1 and ud.

Thus, shifting every vertex (except the last vertex ud) to its neighbouring vertex, we get new

u0 − ud paths of length k given as (u0u1u3 . . . ud), (u0u2u3u5 . . . ud), (u0u2u4u5u6 . . . ud) and so

on. The number of these paths are k (including P ). We also have an alternate u0 − ud path

given by u0un−2un−4 . . . ud of length k. Thus, total number of such u0 − ud paths are k + 1. If

we delete distinct edges from each path then the eccentricity of u0 will be changed. But as we

need to find the minimum number of edges to be removed such that the resulting graph loses

its property of self-centeredness, we get that if we delete three edges incident on a single vertex

the resultant graph will be a graph with a pendant vertex and thus not a self-centered graph.

Hence N(C2
n) = 3.

Case 4. n is even and d is odd. Following the case 3 here, we have more than three shortest

u0−ud paths, where u0 and ud are eccentric vertices. Let u0u2u4 . . . ud and u0un−2un−4 . . . ud be

the paths of length k. Again shifting every vertex (except the last vertex ud) to its neighbouring

vertex in both the paths, we get 2k number of u0 − ud paths. Since 2k ≥ 3, we can easily

conclude that N(C2
n) = 3.

In the next result we calculate N(Ck
n) for some particular values of k.

Proposition 3.1. Let Cn be any cycle and Ck
n be the kth power of Cn, where Cn is d = bn2 c-

self-centered graph, and k divides d. Then

N(Ck
n) =

{
1, if n is odd,

2, if n is even.

Proof. We know that Ck
n is a m-self-centered graph, where m = d dke. It is known that for a vertex

u0 there exists a vertex ud such that d(u0, ud) = m, where u0, ud ∈ V (Ck
n). When n is odd, then

there exists exactly one u0−ud path given as (u0uku2k . . . ud=km). When n is even, then we get

two u0−ud paths of length m given by (u0uku2k . . . ud=km) and (u0un−kun−2k . . . ud=km). It can
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be easily seen that deletion of one edge and two edges from u0−ud paths gives a non-self-centered

graph when n is odd and even, respectively. Hence the result.

4 Minimal Self-Centeredness of Product of Graphs

In this section, we check minimal self-centeredness of some product of cycle graphs, namely,

cartesian product, strong product, and co-normal product.

Theorem 4.1. [17] Let G = Cn12Cn22 . . .2Cnm be the cartesian product of m cycles, where

|V (Cni)| = ni and Ci is di = bni
2 c-self-centered graph for 1 ≤ i ≤ m. Then G is a d self-centered

graph, where d =
∑m

i=1 di.

Theorem 4.2. Let G = Cn12Cn22 . . .2Cnm be the cartesian product of m cycles, where

|V (Cni)| = ni for 1 ≤ i ≤ m. Then G is not a minimal self-centered graph.

Proof. It is known that cycles Cni are di-self-centered, where di = bni
2 c for 1 ≤ i ≤ m and

cartesian product of self-centered graphs is a self-centered graph [19]. Thus, G is
m∑
i=1

di-self-

centered graph. We shall prove that removing any edge from the shortest path between any two

vertices has no effect on the eccentricity of the vertices. Let V (Cni) = {ui0, ui1, . . . , ui(ni−1)}.

Consider the vertices ui0. For every ui0, there exist a vertex uidi such that d(ui0, uidi) = di

in Cni . Let Pi : ui0ui1ui2 . . . uidi be the shortest ui0 − uidi path of length di for 1 ≤ i ≤

m. Let x = (u10, u20, . . . , um0). Then there exists a vertex y = {u1d1 , u2d2 , . . . , umdm} such

that d(x, y) =
m∑
i=1

di. Now using all the paths P ′is, we get the shortest x − y path P :

(u10, u20, . . . , um0)(u11, u20, . . . , um0) . . . (u1d1 , u20, . . . , um0)

(u1d1 , u21, . . . , um0) . . . (u1d1 , u2d2 , . . . , um0) . . . . . . (u1d1 , u2d2 , . . . , um1)(u1d1 , u2d2 , . . . , um2) . . .

(u1d1 , u2d2 , . . . , umdm), where the length of the path P is
m∑
i=1

di. If we delete any edge from the

path P then we get an alternate x− y path

P ′ : (u10, u20, . . . , u(m−1)0, um0)(u10, u20, . . . , u(m−1)0, um1) . . . (u10, u20, . . . , u(m−1)0, umdm)

(u10, u20, . . . , u(m−1)1, umdm) . . . (u10, u20, . . . , u(m−1)dm−1
, umdm) . . . (u11, u2d2 , . . . ,
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u(m−1)dm−1
, umdm) of the length

m∑
i=1

di. We can see that after deleting an edge from the shortest

path, the eccentricity of the vertex is not changed and hence the graph G is not a minimal

self-centered graph.

Theorem 4.3. [17] Let G = G1� . . .�Gn be the strong product of graphs G1, G2, . . . , Gn. Then

G is d-self-centered graph if and only if for some k ∈ {1, . . . , n}, Gk is d-self-centered graph and

diam(Gi) ≤ d for every i, 1 ≤ i ≤ n.

In the next result we show that strong product of even cycles is not a minimal self-centered

graph.

Theorem 4.4. Let G = Cn1 � Cn2 � . . . � Cnm be the strong product of m even cycles, where

|V (Cni)| = ni and n1 ≥ n2 ≥ . . . ≥ nm for 1 ≤ i ≤ m. Then G is not a minimal self-centered

graph.

Proof. Let d = max{ni
2 : 1 ≤ i ≤ m} = n1

2 . It is known that strong product of self-centered

graphs is a self-centered graph [17] and thus G is a d-self-centered graph. Let V (Cni) =

{ui0, ui1, . . . , ui(ni−1)}. For an arbitrary vertex x = (u10, u20, . . . , um0), there exists a ver-

tex y = (u1d1 , u2d2 , . . . , umdm) such that d(x, y) = d. It may be noted that the vertex y

is not unique. Let Pi be the ui0 − uidi paths of length ni
2 , where Pi : ui0ui1ui2 . . . uidi for

1 ≤ i ≤ m. In even cycles we have alternate ui0 − uidi paths of length ni
2 given by P ′i :

ui(ni−1)ui(ni−2) . . . uidi . Now the concatenation of the paths Pi gives the x− y path of length d

given by P : (u10, u20, . . . , um0)(u11, u21, . . . , um1) . . . (u1dm , u2dm , . . . , umdm)

(u1(dm+1), u2dm , . . . , umdm)(u1(dm+2), u2dm , . . . , umdm) . . . (u1d1 , u2dm , . . . , umdm). On the other hand,

concatenation of the paths P ′i gives the path P ′ which is an alternate x − y path of length d,

where P ′ : (u10, u20, . . . , um0)(u1(n1−1), u2(n2−1), . . . , um(nm−1)) . . . (u1dm , u2dm , . . . , umdm)

(u1(dm+1), u2dm , . . . , umdm)(u1(dm+2), u2dm , . . . , umdm) . . . (u1d1 , u2dm , . . . , umdm). As we get an al-

ternate shortest x−y path, deletion of any edge from either paths will not affect the eccentricity
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of the vertex x. This proves the result.

In the lemma given below, we find the degree of an arbitrary vertex x in the co-normal product

of finite number of cycles.

Lemma 4.1. Let G = Cn1 ∗ Cn2 ∗ . . . ∗ Cnm be the co-normal product of m cycles and x =

(x1, . . . , xm) be an arbitrary vertex in G. Then the degree of x is 2m + 2m.

Proof. It may be noted that for any vertex u in a cycle, there are two vertices adjacent to

u. Consider a vertex x = (x1, . . . , xm) in G. If we fix all the values of xi in x but xj , i, j ∈

{1. . . . ,m}, i 6= j, then there exists vertices y = (y1, . . . , ym) and z = (z1, . . . , zm) such that

yi = xi = zi for every i 6= j and yj and zj are adjacent to xj in Gj . This gives 2m number of

vertices which are adjacent to x. Also, we can see that since every vertex has two choices of

adjacent vertices, so in this case we get 2m number of vertices adjacent to x. Thus, total number

of vertices adjacent to any arbitrary vertex x in G is 2m + 2m.

We have following result related to self-centeredness of co-normal product of graphs.

Theorem 4.5. [17] Let G = G1∗G2∗ . . .∗Gn be the co-normal product of graphs G1, G2, . . . , Gn

with |V (Gi)| = ni. Then the following hold:

(i) Let Gi 6= K1 and Gj = K1 for all j 6= i. Then G is d-self-centered graph if and only if Gi is

d-self-centered graph.

(ii) Let there be at least two values of i such that Gi 6= K1. Then G is 2-self-centered graph if

and only if there exists an index l such that ∆(Gl) 6= nl−1, where ∆(G) is the maximum degree

of a vertex in G.

Theorem 4.6. Let G = Cn1 ∗Cn2 ∗ . . . ∗Cnm be the co-normal product of m cycles. Then G is

not a minimal-self-centered graph.
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Proof. The proof may be obtained by applying Lemma 4.1 and proceeding in the similar manner

as the proof of Theorem 4.2.

Lemma 4.2. Let T = Cn1 ⊗ Cn2 ⊗ . . . ⊗ Cnm be the tensor product of m distinct odd cycles

and x be an arbitrary vertex of T . Let nk = max{ni : 1 ≤ i ≤ m} and nl = max{ni \ nk : 1 ≤

i ≤ m}. Then T is a nl-self-centered graph. Also, number of vertices y such that d(x, y) = l are

2(m− 1) + 2m−1.

Proof. Let V (Ci) = ni for 1 ≤ i ≤ m. From [18], it is clear that T is a nl-self-centered graph,

where nl is the second maximum of all ni. Let l = nk (second maximum of ni) for some

k ∈ {1, . . . ,m}. Consider an arbitrary vertex x = (x1, . . . , xk, . . . , xm) and let us fix the vertices

xk and xi except the one, say xp, where i 6= k. Using the fact that every vertex has two neighbors

in cycle graphs, we see that the xp has two choices such that xp1 and xp2 are adjacent to xp in Cnp .

Thus, we get two vertices y = (x1, . . . , xp1 , . . . , xk, . . . , xm) and z = (x1, . . . , xp2 , . . . , xk, . . . , xm)

such that y and z are adjacent to x in T . Proceeding in the similar manner, we get 2(m − 1)

number of such vertices adjacent to x. Also, we can see that every xi (i 6= k) in x has two

choices for the number of vertices adjacent to them in the respective cycle graph. Then by

fundamental theorem of counting, total number of such vertices in 2m−1 and thus we proved

that total number of vertices are 2(m − 1) + 2m−1. It may be seen that we will get a xk − xk

walk of an odd length l by moving around the cycle Ck. And for any two adjacent vertices xp

and xp1 , we can get xp − xp1walk of odd length l by moving back and forth.

Theorem 4.7. Let T = Cn1 ⊗ Cn2 ⊗ . . .⊗ Cnm be the tensor product of m odd cycles. Then T

is not a minimal self-centered graph.

Proof. The proof may be obtained by applying Lemma 4.2 and proceeding in the similar manner

as the proof of Theorem 4.2.



94 Priyanka Singh and Pratima Panigrahi

References

1. S. Brandt1, J. Muttel, and D. Rautenbach, Cycles in squares of trees without generalized

claws, Discrete Mathematics 313 (2013), pp. 1989-1999.

2. S. Brandt1, J. Muttel, and D. Rautenbach, The circumference of the square of a connected

graph, Combinatorica 34 (2014), pp. 547-559.

3. F. Buckley, Self-Centered Graphs, Annals of the New York Academy of Sciences 576 (1989),

pp. 71-78.

4. F. Buckley, Z. Miller and P. J. Slater, On graphs conataining a given graph as center, Journal

of Graph Theory 5 (1981), pp. 427-434.

5. M. Capobianco, Graph equations, Annals of the New York Academy of Sciences 319 (1979),

pp. 114-118.

6. M. I. Huilgol and C. Ramaprakash, Cyclic edge extensions-self centered graphs, Journal of

Mathematics and Computer Science 10 (2014) 131-137.

7. J. Eksteina, P. Holuba, T. Kaisera, L. Xiongc, and S. Zhangf, Star subdivisions and con-

nected even factors in the square of a graph, Discrete Mathematics 312 (2012), pp. 2574-2578.

8. H. Fleischner, The square of every two-connected graph is Hamiltonian, Journal of Combi-

natorial Theory (B) 16 (1974), pp. 29-34.

9. H. Fleischner, In the square of graphs, hamiltonicity and pancyclicity, Hamiltonian con-

nectedness and panconnectedness are equivalent concepts, Monatshefte fr Mathematik 82

(1976), pp. 125-149.

10. T. N. Janakiraman, On Special Classes of Self-centered Graphs, Discrete Mathematics 126

(1994), pp. 411-414.



Journal of Orissa Mathematical Society 95

11. T. N. Janakiraman, M. Bhanumathi and S. Muthammai,Self-centered super graph of a graph

and center number of a graph, Ars Combinatoria 87 (2008), 271-290.
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Abstract

In this article we study equilibrium problems and variational inequality problems on

Hadamard manifolds. Using the KKM technique, we establish the existence of solutions

of the stated problems under the generalized monotonicity assumptions on the functions

involved. We construct some examples to justify our work in Hadamard manifolds.
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1 Introduction

The theory of equilibrium problems and variational inequality problems has many important applications

in many fields of mathematics such as optimization problems, fixed point problems, Nash equilibria prob-

lems, complementarity problems etc. In recent decades, many results concerned with the existence of
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solutions for equilibrium problems and variational inequality problems have been established, see for

example ([2], [3], [10], [19]) and the references therein.

On the other hand, recent interests of a number of researchers are focused on extending some concepts

and techniques of nonlinear analysis in Euclidean spaces to Riemannian manifolds. There are some

advantages for a generalization of optimization methods from Euclidean spaces to Riemannian mani-

folds, because nonconvex and nonsmooth constrained optimization problems can be seen as convex and

smooth unconstrained optimization problems from the Riemannian geometry point of view, see for ex-

ample ([17], [13], [14]). Colao et al. [5] have constructed an example of an equilibrium problem on

an Euclidean space which can not be solved by using the classical results known in vector spaces but

the problem can be solved by rewriting it on a Riemannian manifold. Therefore, the extension of the

concepts and techniques of the theory of equilibrium problems and variational inequality problems from

Euclidean spaces to Riemannian manifolds is natural.

Németh [12] studied geodesic monotone vector fields, Wang et al. [18] studied monotone and accretive

vector fields on Riemannian manifolds. Li et al. [7] extended maximal monotone vector fields from

Banach spaces to Hadamard manifolds (simply connected complete Riemannian manifold with nonpos-

itive sectional curvature). Németh [11] generalized some basic existence and uniqueness theorems of

the classical theory of variational inequalities on Euclidean spaces to Hadamard manifolds. Li et al. [8]

studied the variational inequality problems on Riemannian manifolds. Zhou and Huang [20] introduced

the notion of the KKM mapping and proved a generalized KKM theorem on the Hadamard manifold.

An existence result for equilibrium problems on Hadamard manifolds was first introduced by Colao et

al. [5] where the equilibrium problem was associated to a monotone bifunction. Zhou and Huang [21]

investigated the relationship between a vector variational inequality problem and a vector optimization

problem on a Hadamard manifold. Tang et al. [16] introduced the proximal point algorithm for pseu-

domonotone variational inequalities on Hadamard manifolds. Li and Huang [9], studied the generalized

vector quasi-equilibrium problems.
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Motivated by the research work mentioned above, we study the existence of solutions of equilibrium

problems and variational inequality problems on Hadamard manifolds by using KKM techniques un-

der weaker assumptions used in ([5]) and [11]. We also introduce the existence of solutions of mixed

equilibrium problems and mixed variational inequality problems on Hadamard manifolds.

2 Preliminaries

In this section, we recall some fundamental definitions, basic properties and notations needed for a com-

prehensive reading of this article. These can be found in any textbook on Riemannian geometry, for

example ([15], [17]).

Let M be an n-dimensional connected manifold. We denote by TxM the n-dimensional tangent space of

M at x and by T M = ∪x∈MTxM, the tangent bundle of M. When M is endowed with a Riemannian metric

< ., . > on the tangent space TxM with corresponding norm denoted by ‖.‖, then M is a Riemannian

manifold. The length of a piecewise smooth curve γ : [a,b]→M joining x to y such that γ(a) = x and

γ(b) = y, is defined by L(γ) =
∫ b

a ‖ γ̇(t) ‖γ(t) dt. Then for any x,y ∈M the Riemannian distance d(x,y)

which induces the original topology on M is defined by minimizing this length over the set of all curves

joining x to y.

On every Riemannian manifold there exists exactly one covariant derivation called Levi-Civita connec-

tion denoted by ∇XY for any vector fields X ,Y on M. Let γ be a smooth curve in M. A vector field X

is said to be parallel along γ if ∇γ ′X = 0. If γ ′ itself is parallel along γ , we say that γ is a geodesic. A

geodesic joining x to y in M is said to be a minimal geodesic if its length equals d(x,y).

A Riemannian manifold is complete if for any x ∈M all geodesics emanating from x are defined for all

t ∈ R. By the Hopf-Rinow theorem, we know that if M is complete then any pair of points in M can be

joined by a minimal geodesic. Moreover, (M,d) is a complete metric space and bounded closed subsets

are compact.

Assuming that M is complete the exponential mapping expx : TxM → M is defined by expx v = γv(1),
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where γv is the geodesic defined by its position x and velocity v at x.

A Hadamard manifold is a simply connected complete Riemannian manifold with nonpositive sectional

curvature. The exponential mapping exp and its inverse exp−1 are continuous on Hadamard manifold.

Let M denote a finite dimensional Hadamard manifold.

Definition 1. ([14]) A subset K of M is said to be geodesic convex if and only if for any two points

x,y ∈ K, the geodesic joining x to y is contained in K. That is if γ : [0,1]→M is a geodesic with x = γ(0)

and y = γ(1), then γ(t) ∈ K, f or 0≤ t ≤ 1.

Definition 2. ([14]) A real-valued function f : M→ R defined on a geodesic convex set K is said to be

geodesic convex if and only if for 0≤ t ≤ 1,

f (γ(t))≤ (1− t) f (γ(0))+ t f (γ(1)).

Definition 3. ([5]) For an arbitrary subset C ⊆M the minimal geodesic convex subset which contains C

is called the convex hull of C and is denoted by co(C). It is easy to check that co(C) =
⋃

∞
n=1Cn, where

C0 =C and Cn = {z ∈ γx,y : x,y ∈Cn−1}.

Definition 4. ([21]) Let K⊂M be a nonempty closed geodesic convex set and G : K→ 2K be a set-valued

mapping. We say that G is a KKM mapping if for any {x1, ...,xm} ⊂ K, we have

co({x1, ...,xm})⊂
m⋃

i=1

G(xi).

Lemma 1. ([5]) Let K be a nonempty closed geodesic convex set and G : K → 2K be a set-valued

mapping such that for each x ∈ K, G(x) is closed. Suppose that

(i) there exists x0 ∈ K such that G(x0) is compact.

(ii) ∀x1, ..,xm ∈ K, co({x1, ..,xm})⊂
⋃m

i=1 G(xi).

Then
⋂

x∈K G(x) 6= /0.
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We recall that a geodesic triangle ∆(x1x2x3) of a Riemannian manifold is the set consisting of three

distinct points x1, x2, x3 called the vertices and three minimizing geodesic segments γi+1 joining xi+1 to

xi+2 called the sides, where i = 1,2,3(mod 3).

Theorem 1. [15] Let M be a Hadamard manifold, ∆(x1x2x3) a geodesic triangle and γi+1 : [0, li+1]→

M geodesic segments joining xi+1 to xi+2 and set li+1 = l(γi+1), θi+1 = ](γ ′i+1(0),−γ ′i (li)), for i =

1,2,3(mod 3). Then

θ1 +θ2 +θ3 ≤ π,

l2
i+1 + l2

i+2−2li+1li+2 cosθi+2 ≤ l2
i ,

d2(xi+1,xi+2)+d2(xi+2,xi)−2
〈

exp−1
xi+2

xi+1,exp−1
xi+2

xi
〉
≤ d2(xi,xi+1). (2.1)

By using the above inequality for any three points x,y,z ∈M, we can get

d2(x,y)≤
〈

exp−1
x z,exp−1

x y
〉
+
〈

exp−1
y z,exp−1

y x
〉
. (2.2)

Lemma 2. ([7]) Let x0 ∈M and {xn} ∈M such that xn→ x0. Then the following assertions hold.

(i) For any y ∈M

exp−1
xn

y→ exp−1
x0

y and exp−1
y xn→ exp−1

y x0.

(ii) If {vn} is a sequence such that vn ∈ TxnM and vn→ v0, then v0 ∈ Tx0M.

(iii) Given the sequence {un} and {vn} with un,vn ∈ TxnM, if un→ u0 and vn→ v0 with u0,v0 ∈ Tx0M,

then
〈
un,vn

〉
→
〈
u0,v0

〉
.

Proposition 1. ([1]) Let M be a Hadamard manifold, x ∈ M and u ∈ TxM \ {0} nonzero. Then the

function g : M→ R defined by

g(y) =
〈
u,exp−1

x y
〉
,

is a quasi-convex function.
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Throughout the remaining part of the article we take M to be a finite dimensional Hadamard manifold

and K ⊆M denote a nonempty closed geodesic convex set, unless explicitly stated otherwise.

3 Main Results

3.1 Equilibrium problems

An existence result for equilibrium problems on Hadamard manifolds was first established by [5] where

the equilibrium problem was associated to a monotone bifunction.

Let F : K×K → R be a bifunction satisfying the property F(x,x) = 0 for all x ∈ K. The equilibrium

problem introduced by [5] is to find a point x̄ ∈ K, such that

(EP) F(x̄,y)≥ 0, ∀y ∈ K.

A point x̄ ∈ K solving this problem (EP) is said to be an equilibrium point.

Definition 5. ([5]) We call a bifunction F to be monotone on K if for any x,y ∈ K, we have

F(x,y)+F(y,x)≤ 0.

Definition 6. We call a bifunction F to be pseudomonotone on K if for any

x,y ∈ K,

F(x,y)≥ 0⇒ F(y,x)≤ 0.

Remark 1. If a bifunction F is monotone on K then it is easy to see that it is also pseudomonotone. But

the converse is not true which follows from the following counter example.

Example 1. Let H1 = {x = (x1,x2) ∈R2 : x2
1−x2

2 =−1, x2 > 0} be the hyperbolic 1-space which forms

a Hadamard manifold ([4]) endowed with the metric defined by

〈
x,y
〉
= x1y1− x2y2, ∀x = (x1,x2),y = (y1,y2) ∈ R2.
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Let K be a subset of H1 defined by K = {x = (x1,x2) ∈ H1 :−1≤ x1 ≤ 1}.

Now we define a bifunction F : K×K→ R by

F(x,y) = x2(x1− y1).

To show that F is pseudomonotone on K, but not monotone.

F(x,y)≥ 0 on K when x1 ≥ y1 (as x2 > 0),

then F(y,x) = y2(y1− x1)≤ 0 (as y2 > 0).

Therefore, F is pseudomonotone.

Particularly if we take x = (1,
√

2) ∈ K and y = (0,1) ∈ K,

then F(x,y)+F(y,x) =
√

2−1 > 0.

That is, F is not monotone.

3.2 Mixed equilibrium problems

Let ψ : K→ R be a mapping and F : K×K→ R be a bifunction satisfying the property F(x,x) = 0 for

all x ∈ K. Then the problem is to find x̄ ∈ K such that

(MEP) F(x̄,y)+ψ(y)−ψ(x̄)≥ 0, ∀y ∈ K,

is called a mixed equilibrium problem (MEP) on K. We denote SOL(MEP), the solution set of (MEP).

If ψ ≡ 0, then (MEP) reduces to the equilibrium problem (EP).

3.3 Existence of solutions of mixed equilibrium problems

In this section we study the existence of solutions of mixed equilibrium problems (MEP) under pseu-

domonotonicity assumptions.

Definition 7. A bifunction F is said to be pseudomonotone with respect to the function ψ if

F(x,y)+ψ(y)−ψ(x)≥ 0⇒ F(y,x)+ψ(x)−ψ(y)≤ 0.
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Definition 8. Let K be a geodesic convex subset of M. A function F : K→R is said to be hemicontinuous

if for every geodesic γ : [0,1]→ K, whenever t→ 0, F(γ(t))→ F(γ(0)).

Next we give the following lemma which will be needed in the sequel.

Lemma 3. Let F : K×K→R be a bifunction which is hemicontinuous in the first argument and for fixed

x ∈ K the mapping z 7→ F(x,z) be geodesic convex. Also assume that the map ψ : K → R is geodesic

convex and F is pseudomonotone with respect to ψ . Then x ∈ K solves (MEP), if and only if

F(y,x)+ψ(x)−ψ(y)≤ 0, for all y ∈ K.

Proof. Suppose x ∈ K solves (MEP), then

F(x,y)+ψ(y)−ψ(x)≥ 0, for all y ∈ K. (3.3)

Since F is pseudomonotone with respect to the function ψ, we have

F(y,x)+ψ(x)−ψ(y)≤ 0.

Conversely, let x ∈ K be a solution of (3.3). Let γ(t) be a geodesic joining x and y such that γ(0) = x.

As the set K is geodesic convex, we have

F(γ(t),x)+ψ(x)−ψ(γ(t))≤ 0, for 0≤ t ≤ 1. (3.4)

Since ψ is geodesic convex, we have

ψ(γ(t))≤ tψ(y)+(1− t)ψ(x)

⇒ ψ(γ(t))−ψ(x)≤ t[ψ(y)−ψ(x)].

As z 7→ F(x,z) is geodesic convex,

0 = F(γ(t),γ(t))≤ tF(γ(t),y)+(1− t)F(γ(t),x),

⇒ ψ(γ(t))−ψ(x)≤ tF(γ(t),y)+(1− t)F(γ(t),x)+ψ(γ(t))−ψ(x)
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≤ tF(γ(t),y)+(1− t)F(γ(t),x)+ t[ψ(y)−ψ(x)]

⇒ t[F(γ(t),y)−F(γ(t),x)+ψ(y)−ψ(x)]≥−[F(γ(t),x)+ψ(x)−ψ(γ(t))]≥ 0 (by (3.4)).

That is, F(γ(t),y)−F(γ(t),x)+ψ(y)−ψ(x)≥ 0, as t ≥ 0.

By the hemicontinuity of F , taking t→ 0, we have

F(x,y)−F(x,x)+ψ(y)−ψ(x)≥ 0⇒ F(x,y)+ψ(y)−ψ(x)≥ 0, ∀ y ∈ K.

This completes the proof. �

Next we prove the main existence theorem. First we consider the case when the set K is bounded.

Theorem 2. Let K be a bounded subset of M and F : K×K→R be a bifunction which is hemicontinuous

in the first argument. Suppose for fixed x ∈ K, the mappings z 7→ F(x,z) and ψ : K → R are geodesic

convex, lower semicontinuous. Also assume that the bifunction F is pseudomonotone with respect to ψ .

Then (MEP) has a solution.

Proof. Consider the two set-valued mappings G1 : K→ 2K and G2 : K→ 2K such that

G1(y) = {x ∈ K : F(x,y)+ψ(y)−ψ(x)≥ 0}, ∀ y ∈ K,

G2(y) = {x ∈ K : F(y,x)+ψ(x)−ψ(y)≤ 0}, ∀ y ∈ K.

It is easy to see that x̄ ∈ K solves (MEP) if and only if x̄ ∈
⋂

y∈K G1(y). Thus it suffices to prove that⋂
y∈K G1(y) 6= /0. First we show G1 is a (KKM) mapping. So we have to prove that for any choice of

x1, ...,xm ∈ K

co({x1, ...,xm})⊂
m⋃

i=1

G1(xi).

On the contrary assume that there exists a point x0 ∈K, such that x0 ∈ co({x1, ...,xm}) but x0 /∈
⋃m

i=1 G1(xi).

That is

F(x0,xi)+ψ(xi)−ψ(x0)< 0, ∀i ∈ {1, ...,m}.

This implies that for any i ∈ {1, ...,m}, xi ∈ {y ∈ K : F(x0,y)+ψ(y)−ψ(x0)< 0}. As y 7→ F(x0,y) and

ψ are geodesic convex functions their sum is a geodesic convex function. That is y 7→ F(x0,y)+ψ(y) is
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geodesic convex. So the set {y ∈ K : F(x0,y)+ψ(y)−ψ(x0)< 0} is a geodesic convex set. Since

x0 ∈ co({x1, ...,xm})⊆ {y ∈ K : F(x0,y)+ψ(y)−ψ(x0)< 0}.

Therefore F(x0,x0)+ψ(x0)−ψ(x0) < 0. But we have F(x0,x0) = 0, a contradiction. Hence G1 is a

(KKM) mapping.

From Lemma 3, we have G1(y)⊂ G2(y), ∀y ∈ K. That is,

co({x1, ...,xm})⊂
m⋃

i=1

G2(xi).

Hence G2 is also a (KKM) mapping.

Since F(y, .) and ψ are lower semicontinuous, G2(y) is closed for all y ∈ K.

Now G2(y) is a closed subset of a compact set K. So G2(y) is compact for all y ∈ K.

Hence by Lemma 1, there exists a point x̄ ∈ K such that x̄ ∈
⋂

y∈K G2(y).

By Lemma 3, we have
⋂

y∈K G1(y) =
⋂

y∈K G2(y). That is x̄ ∈
⋂

y∈K G1(y). So there exists a point x̄ ∈ K,

such that

F(x̄,y)+ψ(y)−ψ(x̄)≥ 0, ∀y ∈ K.

Therefore, x̄ ∈ K solves (MEP). �

As a monotone bifunction is also pseudomonotone. The following corollary follows.

Corollary 1. Let K be bounded and F : K×K → R be a bifunction which is hemicontinuous in the

first argument. Assume that for fixed x ∈ K the mapping z 7→ F(x,z) is geodesic convex and lower

semicontinuous. Also assume that ψ : K→R is geodesic convex and lower semicontinuous map. If F is

monotone then (MEP) has a solution.

Suppose K is an unbounded subset of M. For a point 0 ∈ M, let ΣR = {x ∈ M : d(0,x) ≤ R} be the

closed geodesic ball of radius R and center 0.
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Theorem 3. Let K be an unbounded subset of M and F : K×K → R be a bifunction which is hemi-

continuous in the first argument. Suppose for fixed x ∈ K, the mappings z 7→ F(x,z) and ψ : K→ R are

geodesic convex, lower semicontinuous. Also assume that F is pseudomonotone with respect to ψ . If

there exists a point x0 ∈ K, such that

F(x,x0)+ψ(x0)−ψ(x)< 0, whenever d(0,x)→+∞, x ∈ K, (3.5)

holds, then (MEP) has a solution.

Proof. Let KR = K∩ΣR. If KR 6= /0, then by Theorem 2, there exists at least one xR ∈ KR such that

F(xR,y)+ψ(y)−ψ(xR)≥ 0, ∀y ∈ KR. (3.6)

We now take a point x0 ∈ K satisfying (3.5) with d(0,x0)< R, so x0 ∈ KR.

Hence by (3.6), we have

F(xR,x0)+ψ(x0)−ψ(xR)≥ 0. (3.7)

If d(0,xR) = R for all R, we may choose R large enough so that d(0,xR)→+∞.

Hence by (3.5), F(xR,x0)+ψ(x0)−ψ(xR)< 0 contradicts (3.7). So there exists an R such that d(0,xR)<

R.

Given y∈K, let γ(t) be a geodesic joining xR to y with γ(0) = xR. Now since d(0,xR)< R, we can choose

0 < t < 1, sufficiently small so that γ(t) ∈ KR.

Hence

0≤ F(xR,γ(t))+ψ(γ(t))−ψ(xR)

≤ tF(xR,y)+(1− t)F(xR,xR)+ t[ψ(y)−ψ(xR)]

= t[F(xR,y)+ψ(y)−ψ(xR)],

or,F(xR,y)+ψ(y)−ψ(xR)≥ 0, for y ∈ K.

That is xR is a solution of (MEP). �

The above theorem also holds good for monotone bifunctions.
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Corollary 2. Let K be an unbounded subset of M and F : K×K → R be a bifunction which is hemi-

continuous in the first argument and monotone. Suppose for fixed x ∈ K, the mappings z 7→ F(x,z) and

ψ : K→ R are geodesic convex, lower semicontinuous. If there exists a point x0 ∈ K, such that

F(x,x0)+ψ(x0)−ψ(x)< 0, whenever d(0,x)→+∞, x ∈ K,

holds, then (MEP) has a solution.

3.4 Existence results for equilibrium problems

If ψ ≡ 0, then the mixed equilibrium problem (MEP) reduces to the equilibrium problem (EP). There-

fore we can get the existence of solution of the equilibrium problems under both monotonicity and

pseudomonotonicity assumptions on the associated bifunctions.

Lemma 4. Let F : K×K→R be a bifunction which is pseudomonotone and hemicontinuous in the first

argument. Suppose for fixed x ∈ K the mapping z 7→ F(x,z) is geodesic convex. Then x ∈ K is a solution

of the equilibrium problem (EP) if and only if

F(y,x)≤ 0, for all y ∈ K.

We now provide the main existence theorem. First we take K to be bounded.

Theorem 4. Let K be bounded and F : K×K→ R be pseudomonotone and hemicontinuous in the first

argument. Let for fixed x ∈ K, the mapping z 7→ F(x,z) be geodesic convex and lower semicontinuous.

Then (EP) has a solution.

As a monotone bifunction is also pseudomonotone. The following corollary follows.

Corollary 3. Let K be bounded subset of M and F : K×K → R be a bifunction which is monotone

and hemicontinuous in the first argument. Suppose for fixed x ∈ K the mapping z 7→ F(x,z) be geodesic

convex and lower semicontinuous. Then (EP) has a solution.
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Next we consider the case when K is unbounded.

Theorem 5. Let K be an unbounded subset of M and F : K×K → R be a bifunction which is pseu-

domonotone and hemicontinuous in the first argument. Suppose for fixed x ∈ K the mapping z 7→ F(x,z)

is geodesic convex and lower semicontinuous. If there exists a point x0 ∈ K, such that

F(x,x0)< 0, whenever d(0,x)→+∞, x ∈ K.

Then (EP) has a solution.

The following corollary is obvious.

Corollary 4. Let K be an unbounded subset of M and F : K×K→R be a bifunction which is monotone

and hemicontinuous in the first argument. Suppose for fixed x ∈ K, the mapping z 7→ F(x,z) is geodesic

convex, lower semicontinuous. If there exists a point x0 ∈ K, such that

F(x,x0)< 0, whenever d(0,x)→+∞, x ∈ K.

Then (EP) has a solution.

The following example is constructed in support of Theorem 4.

Example 2. We now consider Example 1. Here K is a compact subset of the Hadamard manifold H1.

Moreover the normalized geodesic γ : R→ H1 starting from x ∈ H1 is given by

γ(t) = (cosh t)x+(sinh t)v, ∀t ∈ R,

where v ∈ TxH1 is a unit vector. Clearly K is geodesic convex.

The bifunction F defined by

F(x,y) = x2(x1− y1)

is pseudomonotone. Also F is continuous in both the variables, it is hemicontinuous in the first variable

and lower semicontinuous in the second variable. Clearly F is geodesic convex in the second variable.
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Hence F satisfies all the conditions of Theorem 4. If we take x̄ = (1,
√

2) ∈ K and any point y = (y1,y2)

in K. Then

F(x̄,y) =
√

2(1− y1)≥ 0, as y1 ≤ 1.

That is F(x̄,y)≥ 0, for all y∈K. Therefore there exists a point x̄ ∈K such that F(x̄,y)≥ 0, for all y∈K.

3.5 Existence results for variational inequality problems

Németh [11] generalized some basic existence and uniqueness theorems of the classical theory of vari-

ational inequality problems on the Hadamard manifolds. In this section we establish the existence of

solutions of a variational inequality problem under weak pseudomonotonicity assumptions on Hadamard

manifolds.

Definition 9. ([16]) A vector field V on K is said to be weak monotone if for any two points x,y ∈ K,

there exists a real number µ > 0, such that

〈
Vx,exp−1

x y
〉
+
〈
Vy,exp−1

y x
〉
≤ µd2(x,y). (3.8)

Definition 10. A vector field V on K is said to be weak pseudomonotone if for any two points x,y ∈ K,

there exists a real number µ > 0, such that

〈
Vx,exp−1

x y
〉
≥ 0⇒

〈
Vy,exp−1

y x
〉
≤ µd2(x,y).

Remark 2. If a vector field V is weak monotone on K then it is easy to see that it is also weak pseu-

domonotone. But the converse does not hold in general.

Let M and N be connected Riemannian manifolds and Φ : M→ N is an isometry, that is Φ is C∞, and

for all x ∈M and u,v ∈ TxM, we have
〈
dΦxu,dΦxv

〉
=
〈
u,v
〉
. One can verify that Φ preserves geodesics,

i.e., β is a geodesic in M if and only if γ = Φ ◦ β is a geodesic in N, and that dΦγ(t)γ
′(t) = β ′(t).

Furthermore, Φ preserves the distance function, i.e., d(Φ(x),Φ(y)) = d(x,y), for all x,y ∈M.
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Proposition 2. Let M and N be connected Riemannian manifolds and χ(M) denotes the set of all vector

fields in M. Suppose V ∈ χ(M) and Φ : M → N is an isometry. Let W ∈ χ(N) be defined by W =

dΦ◦V ◦Φ−1. Then

(i) V is monotone if and only if W is monotone;

(ii) V is weakly monotone if and only if W is weakly monotone;

(iii) V is pseudomonotone if and only if W is pseudomonotone;

(iv) V is weak pseudomonotone if and only if W is weak pseudomonotone.

Proof. The proof of the items (i), (ii) and (iii) are similar to those of Proposition 2.3 of [16], hence

omitted. The proof of item (iv) follows directly from that of item (iii). �

We now construct an example on a Hadamard manifold which shows that weak pseudomonotonicity

generalizes weak monotonicity.

Example 3. Let V : R2→R2 be defined by V (x1,x2) = (x2
1,x

2
2) and K = {(x1,x2) ∈R2 : x1 ≤ 0,x2 = 0}.

It is easy to check that K is nonempty, closed and convex subset of R2 and V is weak pseudomonotone

with µ = 1 on K, but it is not weak monotone with µ = 1 on K. Endowing R2 with the Riemannian

metric g, given by

g(x1,x2) =

(
4x2

1 +1 −2x1

−2x1 1

)
,

we obtain the Riemannian manifold (M,g) that is complete and of constant curvature 0. Note that

Φ(x1,x2) = (x1,x2
1−x2) is an isometry ([6]) between R2 and (M,g). We define W = dΦ◦V ◦Φ−1. From

Proposition 2 we conclude that W is weak pseudomonotone with µ = 1 on the closed and geodesic

convex subset Φ(K) of (M,g) but it is not weak monotone with µ = 1 on Φ(K).

Also Example 3.1 of [16] shows that weak monotonicity generalizes monotonicity. Therefore the

implication relationship between monotonicity and some generalized monotonicity is shown as follows:

monotonicity ⇒ weak monotonicity ⇒ weak pseudomonotonicity.



112 S. Jana and C. Nahak

To prove the main existence theorem, the following lemma is required.

Lemma 5. Suppose that a vector field V is hemicontinuous and weak pseudomonotone on K. Also

assume that for a geodesic γ : [0,1]→ K, with γ(0) = x, we have limt→0
d2(x,γ(t))

t = 0. Then x satisfies

〈
Vx,exp−1

x y
〉
≥ 0, ∀y ∈ K, (3.9)

if and only if it satisfies 〈
Vy,exp−1

y x
〉
≤ µd2(x,y), ∀y ∈ K. (3.10)

Proof. By the definition of weak psudomonotonicity of V it follows that (3.9) implies (3.10). Next to

show (3.10) implies (3.9).

Let z ∈ K and as K is geodesic convex y = expx(t exp−1
x z) ∈ K for 0≤ t ≤ 1. Hence by (3.10) for t > 0,

〈
Vexpx(t exp−1

x z),exp−1
expx(t exp−1

x z)
x
〉
≤ µd2(x,expx(t exp−1

x z)). (3.11)

Let Pγ(t),γ(0) be the parallel transport along the geodesic γ : [0,1]→ K, defined by γ(t) = expx(t exp−1
x z),

from γ(t) to γ(0) = x. Since the parallel transport along a curve is an isometry and the tangent vector of

a geodesic is parallel along the geodesic, (3.11) implies

〈
Pγ(t),γ(0)Vexpx(t exp−1

x z),−t exp−1
x z
〉
≤ µd2(x,expx(t exp−1

x z)),

or 〈
Pγ(t),γ(0)Vexpx(t exp−1

x z),exp−1
x z
〉
≥−µ

d2(x,expx(t exp−1
x z))

t
for all z ∈ K. (3.12)

Passing t→ 0, in inequality (3.12), we get

〈
Vx,exp−1

x z
〉
≥ 0 for any z ∈ K.

So x is a solution of (3.9). The proof completes. �

Next we prove the main existence theorem. First we consider the case when K is bounded.



Journal of Orissa Mathematical Society 113

Theorem 6. Let K be a bounded subset of M and for a geodesic γ : [0,1]→ K, with γ(0) = x, we have

limt→0
d2(x,γ(t))

t = 0. If the vector field V is hemicontinuous, weak pseudomonotone, then (VIP) has a

solution.

Proof. Consider the two set-valued mappings F : K→ 2K and G : K→ 2K such that

F(y) = {x ∈ K :
〈
Vx,exp−1

x y
〉
≥ 0}, for all y ∈ K;

G(y) = {x ∈ K :
〈
Vy,exp−1

y x
〉
≤ µd2(x,y)}, for all y ∈ K.

It is easy to see that x̄ ∈ K solves (VIP) if and only if x̄ ∈
⋂

y∈K F(y). Thus it suffices to prove that⋂
y∈K F(y) 6= /0. First we show that F is a (KKM) mapping. So we have to prove that for any choice of

x1, ...,xm ∈ K,

co({x1, ...,xm})⊂
m⋃

i=1

F(xi).

Suppose on the contrary that there exists a point x0 ∈K, such that x0 ∈ co({x1, ...,xm}) but x0 /∈
⋃m

i=1 F(xi).

That is

〈
Vx0 ,exp−1

x0
xi
〉
< 0, ∀i ∈ {1, ...,m}.

This implies that for any i ∈ {1, ...,m}, xi ∈ {y ∈ K :
〈
Vx0 ,exp−1

x0
y
〉
< 0}. Since the function y 7→〈

u,exp−1
x y
〉

is quasi-convex, the set {y ∈ K :
〈
Vx0 ,exp−1

x0
y
〉
< 0} is a geodesic convex set ([1]). Then

x0 ∈ co({x1, ...,xm})⊆ {y ∈ K :
〈
Vx0 ,exp−1

x0
y
〉
< 0}.

Therefore 〈
Vx0 ,exp−1

x0
x0
〉
< 0.

This is a contradiction as
〈
Vx0 ,exp−1

x0
x0
〉
= 0.

So F is a (KKM) mapping.
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From weak pseudomonotonicity we have F(y)⊂ G(y), ∀y ∈ K. Hence G is also a (KKM) mapping.

Let x ∈ K and {xn} ∈ G(y), such that xn→ x as n→ ∞. Then exp−1
y xn→ exp−1

y x. Hence

〈
Vy,exp−1

y xn
〉
→
〈
Vy,exp−1

y x
〉
.

Also since d is continuous d(xn,y)→ d(x,y) as n→ ∞. This implies for all y ∈ K, G(y) is closed subset

of the compact set K. Hence G(y) is compact.

Hence by Lemma 1, there exists a point x̄ ∈ K such that x̄ ∈
⋂

y∈K G(y).

By Lemma 5 we have
⋂

y∈K G(y) =
⋂

y∈K F(y). That is x̄ ∈
⋂

y∈K F(y).

So there exists a point x̄ ∈ K such that

〈
Vx̄,exp−1

x̄ y
〉
≥ 0, ∀y ∈ K.

Therefore, x̄ ∈ K solves (VIP). �

As weak pseudomonotonicity generalizes weak monotonicity. The following corollary is obvious.

Corollary 5. Let K be a bounded subset of M and a vector field V be hemicontinuous, weak monotone.

Also assume that for a geodesic γ : [0,1]→ K, with γ(0) = x, we have limt→0
d2(x,γ(t))

t = 0. Then (VIP)

has a solution.

Next we consider the case when K is unbounded. Given a point 0 ∈ M, we denote ΣR = {x ∈ M :

d(0,x)≤ R} to be the closed geodesic ball of radius R and center 0.

Theorem 7. Suppose that K is an unbounded subset of M and for a geodesic γ : [0,1]→K, with γ(0) = x,

we have limt→0
d2(x,γ(t))

t = 0. Also in addition we assume that the following condition (A) holds.

(A) There exists a point x0 ∈ K such that

〈
Vx,exp−1

x x0
〉
< 0, with d(0,x)→+∞, x ∈ K. (3.13)

If a vector field V is hemicontinuous and weak pseudomonotone, then (VIP) has a solution.
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Proof. Let KR = K∩ΣR. If KR 6= /0, then there exists at least one xR ∈ KR

〈
VxR ,exp−1

xR
y
〉
≥ 0, ∀y ∈ KR, (3.14)

by Theorem 6. We now take a point x0 ∈ K satisfying (3.13) with d(0,x0)< R, so x0 ∈ KR.

Hence by (3.14), we have 〈
VxR ,exp−1

xR
x0
〉
≥ 0. (3.15)

If d(0,xR) = R for all R, we may choose R large enough so that d(0,xR)→ ∞.

Hence by assumption (A),
〈
VxR ,exp−1

xR
x0
〉
< 0, which contradicts (3.15). So there exists an R such that

d(0,xR)< R.

Hence given y ∈ K, we can choose t ≥ 0 sufficiently small so that w = expxR
(t exp−1

xR
y) ∈ KR. Conse-

quently

0≤
〈
VxR ,exp−1

xR
w
〉
= t
〈
VxR ,exp−1

xR
y
〉

for y ∈ K,

or

〈
VxR ,exp−1

xR
y
〉
≥ 0 for y ∈ K,

which means that xR is a solution of (VIP). �

From the above theorem, the following corollary follows immediately.

Corollary 6. Let K ⊂ M be an unbounded and a vector field V be hemicontinuous, weak monotone.

Also assume that for a geodesic γ : [0,1]→ K, with γ(0) = x, we have limt→0
d2(x,γ(t))

t = 0. If there exists

a point x0 ∈ K, such that

〈
Vx,exp−1

x x0
〉
< 0, with d(0,x)→+∞, x ∈ K.

Then the variational inequality problem (VIP) has a solution.
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3.6 Existence results for mixed variational inequality problems

This section is devoted to the study of mixed variational inequality problems on Hadamard manifolds

under weak monotonicity assumptions. Let V be a vector field on K and ψ : K→R be a mapping. Then

the problem is to find x̄ ∈ K, such that

(MVIP)
〈
Vx̄,exp−1

x̄ y
〉
+ψ(y)−ψ(x̄)≥ 0, ∀y ∈ K,

is called a mixed variational inequality problem ([5]). We denote SOL(MVIP), the solution set of mixed

variational inequality (MVIP).

Remark 3. If ψ(x̄)≡ 0, then (MVIP) reduces to the variational inequality problem (VIP).

Now we need the following lemma which will be used to prove our main results on mixed variational

inequality problems.

Lemma 6. Suppose that a vector field V is hemicontinuous, weak monotone on K and ψ : K → R is

geodesic convex. Also for a geodesic γ : [0,1]→ K with γ(0) = x, limt→0
d2(x,γ(t))

t = 0. Then x satisfies

〈
Vx,exp−1

x y
〉
+ψ(y)−ψ(x)≥ 0, ∀y ∈ K, (3.16)

if and only if it satisfies

〈
Vy,exp−1

y x
〉
+ψ(x)−ψ(y)≤ µd2(x,y), ∀y ∈ K. (3.17)

Proof. First we show that (3.16) implies (3.17). Since V is weak monotone we have

〈
Vx,exp−1

x y
〉
+
〈
Vy,exp−1

y x
〉
≤ µd2(x,y)

⇒
〈
Vy,exp−1

y x
〉
+ψ(x)−ψ(y)≤ µd2(x,y)−

〈
Vx,exp−1

x y
〉
+ψ(x)−ψ(y)

= µd2(x,y)−{
〈
Vx,exp−1

x y
〉
+ψ(y)−ψ(x)}

≤ µd2(x,y).
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Next to show that (3.17) implies (3.16).

Let γ(t) = expx(t exp−1
x y),0≤ t ≤ 1 be the geodesic joining x and y in K with γ(0) = x.

Since K is geodesic convex,γ(t) ∈ K. Hence

〈
Vγ(t),exp−1

γ(t) x
〉
+ψ(x)−ψ(γ(t))≤ µd2(x,γ(t)). (3.18)

As ψ is geodesic convex, we have

ψ(γ(t))≤ tψ(y)+(1− t)ψ(x)

⇒ ψ(γ(t))−ψ(x)≤ t[ψ(y)−ψ(x)].

From (3.18) we have, 〈
Vγ(t),exp−1

γ(t) x
〉
≤ µd2(x,γ(t))+ψ(γ(t))−ψ(x)

or, 〈
Vγ(t),exp−1

γ(t) x
〉
≤ µd2(x,γ(t))+ t[ψ(y)−ψ(x)]. (3.19)

Let Pγ(t),γ(0) be the parallel transport along the geodesic γ : [0,1]→ K, from γ(t) to γ(0) = x. Since the

parallel transport along a curve is an isometry and the tangent vector of a geodesic is parallel along the

geodesic from (3.19), we have

〈
Pγ(t),γ(0)Vγ(t),−t exp−1

x y
〉
≤ µd2(x,γ(t))+ t[ψ(y)−ψ(x)],

or, 〈
Pγ(t),γ(0)Vγ(t),exp−1

x y
〉
≥−µ

d2(x,γ(t))
t

−ψ(y)+ψ(x). (3.20)

Taking t→ 0 in inequality (3.20) we get

〈
Vx,exp−1

x y
〉
≥ ψ(x)−ψ(y),

or, 〈
Vx,exp−1

x y
〉
+ψ(y)−ψ(x)≥ 0.

�
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Next we prove the existence theorem for (MVIP) on Hadamard manifolds. First we take the set K to

be bounded.

Theorem 8. Let K be a bounded subset of M. Suppose a vector field V is hemicontinuous and weak

monotone. Assume that ψ : K→ R is a geodesic convex, lower semicontinuous map. Also assume that

for a geodesic γ : [0,1]→ K with γ(0) = x, we have limt→0
d2(x,γ(t))

t = 0. Then (MVIP) has a solution.

Proof. Consider the two set-valued mappings F : K→ 2K and G : K→ 2K such that

F(y) = {x ∈ K :
〈
Vx,exp−1

x y
〉
+ψ(y)−ψ(x)≥ 0}, for all y ∈ K.

G(y) = {x ∈ K :
〈
Vy,exp−1

y x
〉
+ψ(x)−ψ(y)≤ µd2(x,y)}, for all y ∈ K.

It is easy to see that x̄ ∈ K solves (MVIP) if and only if x̄ ∈
⋂

y∈K F(y). Thus it suffices to prove that⋂
y∈K F(y) 6= /0. First we show that F is a (KKM) mapping. So we have to prove that for any choice of

x1, ...,xm ∈ K

co({x1, ...,xm})⊂
m⋃

i=1

F(xi).

On the contrary suppose that there exists a point x0 ∈ K, such that x0 ∈ co({x1, ...,xm}) but x0 /∈⋃m
i=1 F(xi). That is 〈

Vx0 ,exp−1
x0

xi
〉
+ψ(xi)−ψ(x0)< 0, ∀i ∈ {1, ...,m}.

This implies that for any i ∈ {1, ...,m}, xi ∈ {y ∈ K :
〈
Vx0 ,exp−1

x0
y
〉
+ψ(y)−ψ(x0)< 0}. Since the func-

tion y 7→
〈
u,exp−1

x y
〉

is quasi-convex, the set {y ∈ K :
〈
Vx0 ,exp−1

x0
y
〉
+ψ(y)−ψ(x0)< 0} is a geodesic

convex set ([1]). Therefore,

x0 ∈ co({x1, ...,xm})⊆ {y ∈ K :
〈
Vx0 ,exp−1

x0
y
〉
+ψ(y)−ψ(x0)< 0}.

Hence 0 =
〈
Vx0 ,exp−1

x0
x0
〉
< 0, a contradiction.

So F is a (KKM) mapping.

From Lemma 6, we have F(y)⊂ G(y) ∀y ∈ K. Hence G is also a (KKM) mapping.
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Let x ∈ K and {xn} ∈ G(y), such that xn→ x as n→ ∞.

Then we have, exp−1
y xn→ exp−1

y x.

Hence

〈
Vy,exp−1

y xn
〉
→
〈
Vy,exp−1

y x
〉
.

Also since d is continuous, d(xn,y)→ d(x,y) as n→ ∞ and ψ is lower semicontinuous, which implies

G(y) is closed for all y ∈ K.

Now G(y) is a closed subset of a compact set K. So G(y) is compact for all y ∈ K.

Hence by Lemma 1 there exists a point x̄ ∈ K such that x̄ ∈
⋂

y∈K G(y).

By Lemma 6 we have
⋂

y∈K G(y) =
⋂

y∈K F(y). That is x̄ ∈
⋂

y∈K F(y).

So there exists a point x̄ ∈ K, such that

〈
Vx̄,exp−1

x̄ y
〉
+ψ(y)−ψ(x)≥ 0, ∀y ∈ K.

Therefore, x̄ ∈ K solves (MVIP). �

As weak monotonicity generalizes monotonicity, the following corollary is obvious.

Corollary 7. Let K ⊂M be bounded. Assume that a vector field V is hemicontinuous, monotone. And

ψ : K → R is a geodesic convex, lower semicontinuous function. Also suppose that for a geodesic

γ : [0,1]→ K with γ(0) = x, we have limt→0
d2(x,γ(t))

t = 0. Then (MVIP) has a solution.

Next we consider the case where K is unbounded.

Theorem 9. Let K be an unbounded subset of M. Assume that a vector field V is hemicontinuous, weak

monotone. And ψ : K→R is a geodesic convex, lower semicontinuous map. Suppose that for a geodesic

γ : [0,1]→ K with γ(0) = x, limt→0
d2(x,γ(t))

t = 0 holds. If

(B) there exists a point x0 ∈ K such that

〈
Vx,exp−1

x x0
〉
+ψ(x0)−ψ(x)< 0, with d(0,x)→+∞, x ∈ K; (3.21)
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then (MVIP) has a solution.

Proof. We denote ΣR = {x ∈ M : d(0,x) ≤ R} the closed geodesic ball of radius R and center 0. Let

KR = K∩ΣR. If KR 6= /0, then there exists a point xR ∈ KR such that

〈
VxR ,exp−1

xR
y
〉
+ψ(y)−ψ(xR)≥ 0, ∀y ∈ KR, (3.22)

by Theorem 8. We now take a point x0 ∈ K satisfying (3.21) with d(0,x0) < R, so x0 ∈ KR. Hence by

(3.22), we have 〈
VxR ,exp−1

xR
x0
〉
+ψ(x0)−ψ(xR)≥ 0. (3.23)

If d(0,xR) = R for all R, we may choose R large enough so that d(0,xR)→ ∞.

Hence by assumption (B),
〈
VxR ,exp−1

xR
x0
〉
+ψ(x0)−ψ(xR)< 0, contradicts (3.23). So there exists an R

such that d(0,xR)< R.

Hence given y ∈ K, we can choose t ≥ 0 sufficiently small so that γ(t) = expxR
(t exp−1

xR
y) ∈ KR. Conse-

quently

〈
VxR ,exp−1

xR
γ(t)

〉
+ψ(γ(t))−ψ(xR)≥ 0,

or, 〈
VxR , t exp−1

xR
y
〉
+ψ(γ(t))−ψ(xR)≥ 0. (3.24)

As ψ is geodesic convex

ψ(γ(t))≤ tψ(y)+(1− t)ψ(xR)

⇒ ψ(γ(t))−ψ(xR)≤ t[ψ(y)−ψ(xR)].

Now from (3.24), 〈
VxR , t exp−1

xR
y
〉
≥ ψ(xR)−ψ(γ(t))≥ t(ψ(xR)−ψ(y)),

as t ≥ 0, we get 〈
VxR ,exp−1

xR
y
〉
≥ ψ(xR)−ψ(y)
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or, 〈
VxR ,exp−1

xR
y
〉
+ψ(y)−ψ(xR)≥ 0, y ∈ K.

which means that xR is a solution of (MVIP). �

The above theorem holds for monotone vector fields also.

Corollary 8. Let a vector field V be hemicontinuous, monotone. And ψ : K→ R is a geodesic convex,

lower semicontinuous map. Also assume that for a geodesic γ : [0,1]→ K with γ(0) = x, we have

limt→0
d2(x,γ(t))

t = 0. If there exists a point x0 ∈ K, such that

〈
Vx,exp−1

x x0
〉
+ψ(x0)−ψ(x)< 0, with d(0,x)→+∞, x ∈ K;

then (MVIP) has a solution.
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Stochastic programming(SP) is an active branch of mathematical programming dealing

with optimization problems involving uncertain data. Chance constrained linear program-

ming problems and two-stage stochastic programming problems are two very popular ap-

proaches to solve SP problems. In this paper, we consider some chance constrained pro-

gramming problems and two-stage stochastic programming problems where the right hand

side parameters of the constraints follow some non-normal continuous distributions namely

two parameter exponential distribution and three parameter gamma distribution with known

parameters. To find the solution of the stated problems, we first convert the problems in to

equivalent deterministic models. Standard mathematical programming technique is applied

to solve the problems. Some numerical examples are presented to illustrate the proposed

methodology.
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1 Introduction

In Operations Research (OR), a decision maker formulate a real life decision making problem into a

mathematical programming model. By solving such a mathematical programming model the decision

maker can take his/her decision. A mathematical programming model can be represented as :

max : φ(X ; p) (1.1)

subject to

hi(X ; p) ≤ bi, i = 1,2, ...,m.(1.2)

X ≥ 0(1.3)

where X ⊂ Rn is called a decision vector, p is a parameter which forms a parametric space, and the

functions φ and hi (i = 1,2, . . . ,m) are defined as φ ,hi : Rn → R. The function φ is called an objec-

tive function, and (1.2)-(1.3) are known as constraints. If all the functions φ and hi (i = 1,2, . . . ,m) in

the model are linear and X is a continuous vector then the mathematical programming model is called

a linear programming (LP) problem otherwise it is called a non-linear programming (NLP) problem.

There exists several type of mathematical programming problem depending upon their nature e.g., single

objective and multi-objective optimization (depending on the number of objective functions), continu-

ous, discrete, mixed integer optimization (depending on the nature of decision variables), deterministic,

fuzzy, stochastic, possibilistic optimization (depending on the parameter space), multi-level optimization

(depending on the multiple decision makers in a hierarchical organization).

Deterministic mathematical programming has been successfully used for modeling and analyz-

ing a wide variety of systems requiring optimization. One of its assumptions is that the parameters in

the models are known with certainty. In many practical applications, this assumption is quite restrictive

and usually violated because of the inherent randomness in the system. For instance, in planning the

capacity of a telecommunications network, the future demand pattern under which the system will op-
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erate is typically not known with certainty. In financial portfolio management, one chooses to invest in

financial assets whose future returns are not yet realized. In these settings, an optimal network design or

investment policy obtained via a deterministic mathematical program is not satisfying because it either

completely disregards or does not capture well the underlying random effect. In other words, the deter-

ministic model does not take possible future scenarios into account when specifying an optimal solution.

Decision makers often have to make decisions in the presence of uncertainty. Decision making prob-

lems are often formulated as optimization problems, and thus in many situations decision makers wish

to solve optimization problems which depend on parameters which are unknown. Typically it is quite

difficult to formulate and solve such problems, both conceptually and numerically. The difficulty already

starts at the conceptual stage of modeling. Usually there are a variety of ways in which the uncertainty

can be formalized. In the formulation of optimization problems, one usually attempts to find a good

trade-off between the realism of the optimization model, which usually affects the usefulness and quality

of the obtained decisions, and the tractability of the problem, so that it could be solved analytically or

numerically. As a result of these considerations there are a large number of different approaches for for-

mulating and solving optimization problems under uncertainty. One of the most significant approaches

of handling the uncertainty is known as stochastic programming (SP). Other approaches namely fuzzy

programming and interval programming are also used for handling uncertainties. Our objective is to

study some stochastic programming programming problems and their variants.

In most of the real-life decision-making problem, decision maker needs to take decision under

some uncertain environment. The uncertainty can be found in parameter space as well as in the decision

space of a decision making problem. These uncertainties are addressed by using probability distribution

or fuzzy numbers or intervals. Stochastic programming (SP) is concerned with the decision making prob-

lems in which some or all parameters are treated as random variables in order to capture the uncertainty.

SP is used in several real world decision making areas such as energy management, financial modeling,

supply chain and scheduling, hydro thermal power production planning, transportation, agriculture, de-
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fence, environmental and pollution control, production and control management, telecommunications,

etc. Several models and methodologies have been developed in the field of stochastic programming. In

the literature, there exist two very popular approaches to solve SP problems, namely,

(i) Chance constrained programming, and

(ii) Two-stage programming.

Chance constrained programming was developed as a means of describing constraints in math-

ematical programming models in the form of probability levels of attainment. The chance constrained

programming (CCP) can be used to solve problems involving chance-constraints, i.e.constraints having

violation up to a pre-specified probability level. The use of chance-constraints was initially introduced by

Charnes and Cooper[?]. They established three different models for the objective functions with random

cost coefficients:

(i) E-model which maximizes the expected value of the objective function,

(ii) V-model which minimizes the generalized mean square of the objective function, and

(iii) P-model which maximizes the probability of the aspiration level of the objective function.

These techniques at first transforms a SP problem into an equivalent deterministic model. Then it is

solved by using the standard mathematical programming techniques.

Similarly, when the optimal decision is not specified to the realization of future events, a static

stochastic programming model is formulated, although in many context the decision maker has to make a

decision before observing random events which influence the system he/she wants to control. Further, the

optimum solution can be obtained after observation of the random events. For this case, a special class

of dynamic programming model has to be formulated known as two-stage stochastic programming prob-

lem(TSP). TSP is very effective for problems where an analysis of policy scenarios is desired and when

the right-hand side goals of the constraints are random variables with known probability distributions.

TSP deals with recourse, where corrective actions can be taken after a random event has taken place.

In TSP, a decision is firstly made before values of random variables are known; after the random events
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occurred and their values are known, a second-stage decision can be made to minimize “penalties” that

may appear due to any infeasibility. The formulation of two-stage stochastic programming problems was

first introduced by Dantzig [9]. Further it was developed by Beale [6] and Dantzig and Madansky [10].

Unlike the chance constrained programming, the two-stage programming does not allow any constraint

to be violated.

In the next Section, we have presented some literature available on stochastic programming. In

rest of the paper, we have discussed about our models and methodologies.

2 Literature Survey

In the literature of the stochastic linear programming [15, 16, 13], various models have been suggested by

several researchers. Bibliographical review is presented by Stancu and Wets [28], Infanger [13]. Most of

the applications of the stochastic models assume normal distribution for model coefficients. Apart from

the normal distribution, other distributions have been considered for the model coefficients. Goicoechea

et al.[11] presented some probabilistic model involving uniform, exponential, normal and other ran-

dom variables. Further, Goicoechea and Duckstein[12] presented some deterministic equivalent models

for the probabilistic programming with non-normal distributions. Miller and Wagner [23] presented a

method for solving chance constrained programming with joint constraints. Later, Jagannathan[14] has

presented a single-objective joint chance constrained programming model by considering the coefficient

matrices whose elements are normal random variables. Biswal et al.[7] presented some probabilistic

linear programming problems by considering some parameters as exponential random variables. Later,

Biswal et al.[8] proposed a solution scheme for solving probabilistic constrained programming problems

involving log-normal random variables. Sahoo and Biswal [25] have also presented some stochastic

programming problems with cauchy and extreme value distributions. Further, they presented some prob-

abilistic linear programming problems by assuming the random parameters as normal and log-normal

random variables with joint constraint [26]. Barik et al.[1] presented some stochastic programming
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problems involving pareto distributions. Recently, Pradhan and Biswal [24] presented a solution pro-

cedure based on chance constrained programming technique to solve a multi-choice probabilistic linear

programming problem where alternative choices of any multi-choice parameter are considered as random

variables.

The formulation of two-stage stochastic programming problems was first introduced by Dantzig[9].

This model was further developed by Beale [6] and Dantzig and Madansky [10]. Later, Wets [29] pro-

posed an equivalent convex program of a two stage stochastic programming under uncertainty, while

Maarten [21] presented an additional bibliographical study of stochastic programming based on the study

of nearly 351 research papers, from 1996-2007. Quite successfully, Maqsood et al.[22] presented an

interval-parameter fuzzy two-stage stochastic programming method for the planning of water-resources-

management systems under uncertainty. This study was further developed by Li et al.[20] who proposed

an interval-parameter two-stage stochastic mixed integer programming technique for waste management

under uncertainty. Bashiri and Rezaei [5] proposed an extended relocation model for warehouses con-

figuration in a supply chain network, in which uncertainty is associated to operational costs, production

capacity and demands. Barik et al.[3] established a solution procedure for solving the two-stage stochas-

tic linear programming problem considering both randomness and interval parameters in the problem

formulation. Barik et al. [4]also developed a solution procedure for the multiobjective two-stage stochas-

tic linear programming problem considering some parameters of the linear constraints as interval type

discrete random variables with known probability distribution. Barik et al.[2] further presented solution

procedures for a two-stage stochastic programming problem where the right hand side parameters follow

some continuous distribution such as either uniform or exponential or normal or log-normal distribution

with known mean and variance.

In the literature, there is no article on the stochastic programming problem where some parameters

follow either two parameter exponential distribution or three parameter gamma distribution. So, in this

study, we propose solution procedures of a chance constrained programming problem and a two-stage
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stochastic programming problem where the right hand side parameters follow either two parameter ex-

ponential distribution or three parameter gamma distribution with known parameters. To establish the

solution procedures of the proposed problem, we transform the problem into an equivalent determin-

istic model. Then a standard mathematical programming technique is used to solve the transformed

deterministic model.

3 Stochastic Programming Model

Mathematically, a stochastic programming problem can be stated as :

max : z =
n

∑
j=1

c jx j (3.4)

subject to

n

∑
j=1

ai jx j ≤ bi, i = 1,2, ...,m(3.5)

x j ≥ 0, j = 1,2, ...,n(3.6)

where x j ( j = 1,2, ...,n) are n decision variables, ai j (i = 1,2, ...,m; j = 1,2, ...,n) are the coefficients

of the technological matrix, c j ( j = 1,2, ...,n) are the coefficients associated with the decision variables

in the objective function. Only the right hand side parameters bi (i = 1,2, ...,m) of the constraints are

considered as random variable which follow some continuous distribution with finite mean and variance.

3.1 Chance constrained programming model

Mathematical model of a chance constrained programming problem is given by:

max : z =
n

∑
j=1

c jx j (3.7)
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subject to

Pr(
n

∑
j=1

ai jx j ≤ bi)≥ (1− γi), i = 1,2, ...,m(3.8)

0 < γi < 1, i = 1,2...,m(3.9)

x j ≥ 0, j = 1,2...,n(3.10)

where x j ( j = 1,2, ...,n) are n decision variables, ai j (i = 1,2, ...,m; j = 1,2, ...,n) are the constraint

coefficients, c j ( j = 1,2, ...,n) are the coefficients associated with the decision variables in the objective

function, where Pr means probability, γi is the given probability of the extents to which the i-th constraint

violations are admitted. The inequalities given by (3.8) are called chance constraints. Only the right hand

side parameters bi (i = 1,2, ...,m) are considered as random variables which follows some continuous

distributions with finite mean and variance.

3.1.1 Chance constrained programming problem involving two parameter exponential
distribution

It is assumed that bi (i = 1,2, ...,m) are independent random variables those follows two parameters

exponential distribution[19] with parameters θi,σi where

E(bi) = θi +σi, i = 1,2, ..,m and (3.11)

Var(bi) = σ
2
i , i = 1,2, ...,m (3.12)

The probability density function (pdf) of the i-th two parameter exponential variable bi is given by

f (bi) =
1
σi

exp
(−(bi−θi)

σi

)
, i = 1,2, ..,m (3.13)

where bi ≥ θi, σi > 0.

To solve the problem (3.7)-(3.10), we establish the deterministic form of the problem. In this case, right

hand side parameters of the chance-constraints follows two parameter exponential distribution. Then
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from the chance-constraint (3.8), we have

Pr(
n

∑
j=1

ai jx j ≤ bi)≥ (1− γi)

⇒ Pr(bi ≥
n

∑
j=1

ai jx j)≥ (1− γi)

⇒
∫

∞

n
∑
j=1

ai jx j

f (bi)dbi ≥ (1− γi)

⇒
∫

∞

n
∑
j=1

ai jx j

1
σi

exp
(−(bi−θi)

σi

)
dbi ≥ (1− γi)

Integrating, we obtain

n

∑
j=1

ai jx j ≤ θi−σiln(1− γi)(3.14)

Using this value in (3.8), we establish equivalent deterministic model of (3.7)-(3.10) as follows:

max : z =
n

∑
j=1

c jx j (3.15)

subject to

n

∑
j=1

ai jx j ≤ θi−σiln(1− γi)(3.16)

0 < γi < 1, i = 1,2...,m(3.17)

x j ≥ 0, j = 1,2...,n(3.18)

3.1.2 Chance constrained programming problem involving three parameter gamma distribution

Here, we assume that bi (i = 1,2, ...,m) are independent random variables follow three parameter gamma

distribution[18] with parameters αi,βi and θi where

E(bi) = αiβi +θi, i = 1,2, ..,m and (3.19)

Var(bi) = αiβ
2
i , i = 1,2, ...,m (3.20)

The probability density function (pdf) of the i-th three parameter gamma variable bi is given by

f (bi) =
1

Γ(αi)β
αi
i
(bi−θi)

αi−1 exp
(−(bi−θi)

βi

)
, i = 1,2, ....m (3.21)
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where αi > 0,βi > 0 and bi ≥ θi. It is further considered that αi is a positive integer.

To solve the CCP problem (3.7)-(3.10), we establish the deterministic form of the problem. In this case,

right hand side parameters of the chance-constraints follows three parameter gamma distribution. Then

from the chance-constraint (3.8), we have

Pr(
n

∑
j=1

ai jx j ≤ bi)≥ (1− γi)

⇒ Pr(bi ≥
n

∑
j=1

ai jx j)≥ (1− γi)

⇒
∫

∞

n
∑
j=1

ai jx j

f (bi)dbi ≥ (1− γi)

⇒
∫

∞

n
∑
j=1

ai jx j

1
Γ(αi)β

αi
i
(bi−θi)

αi−1 exp
(−(bi−θi)

βi

)
dbi ≥ (1− γi)

Integrating, we obtain

exp

(−( n
∑
j=1

ai jx j−θi)

βi

)(
αi−1

∑
k=0

1
k!

(( n
∑
j=1

ai jx j−θi)

βi

)k
)
≥ (1− γi)(3.22)

Using the above result in (3.8) we get equivalent deterministic model of (3.7)-(3.10) as follows:

max : z =
n

∑
j=1

c jx j (3.23)

subject to

exp

(−( n
∑
j=1

ai jx j−θi)

βi

)(
αi−1

∑
k=0

1
k!

(( n
∑
j=1

ai jx j−θi)

βi

)k
)
≥ (1− γi)(3.24)

0 < γi < 1, i = 1,2...,m(3.25)

x j ≥ 0, j = 1,2...,n(3.26)

3.2 Two-stage stochastic programming model

Basically, two-stage stochastic programming problems are formulated to optimize the decisions which

are made in two different stages.The first phase decisions are made before the realization of the random
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events and the second stage decisions are made after they have been realized.

Here, we shall consider a stochastic linear programming(SLP) problem of the form

min : z =
n

∑
j=1

c jx j (3.27)

subject to

n

∑
j=1

ai jx j ≤ bi, i = 1,2, ...,m(3.28)

n

∑
j=1

rs jx j ≥ hs,s = 1,2, ..., l(3.29)

x j ≥ 0, j = 1,2, ...,n(3.30)

where x j ( j = 1,2, ...,n) are n decision variables, ai j (i = 1,2, ...,m; j = 1,2, ...,n), rs j (s = 1,2, ..., l; j =

1,2, ...,n) are the constraint coefficients, c j ( j = 1,2, ...,n) are the coefficient associated with the decision

variables in the objective function. Only the right hand side parameters bi (i = 1,2, ...,m) are considered

as random variables which follows some continuous distributions with finite mean and variance.

Suppose, we have found a vector (x1,x2, ...,xn),x j ≥ 0( j = 1,2, ..,n) ,which is feasible to

above model (3.27)-(3.30) for an estimated or guessed value of bi (i = 1,2, ...,m). Thus this decision

vector(x1,x2, ...,xn),x j≥ 0( j = 1,2, ..,n) is found here before the actual value of random vector(b1,b2, ...,bm)

is known. This is called first stage technique.

Let yi = bi−
n
∑
j=1

ai jx j (i= 1,2, ...,m). Suppose the discrepancy between
n
∑
j=1

ai jx j and bi is yi (i= 1,2, ...,m).

We minimize
m

∑
i=1

pi | yi |

sub ject to

yi = bi−
n

∑
j=1

ai jx j, i = 1,2, ...,m

n

∑
j=1

rs jx j ≥ hs,s = 1,2, ..., l

x j ≥ 0, j = 1,2, ...,n
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where, pi (i = 1,2, ...,m) are the penalty costs associated with the discrepancy between
n
∑
j=1

ai jx j and bi.

Let bi−
n
∑
j=1

ai jx j = ηi−ρi (i = 1,2, ...,m), where ηi ≥ 0,ρi ≥ 0(i = 1,2, ...,m) are called negative and

positive deviational variables respectively. So, the problem (3.27)-(3.30) can be stated as

min : z̃ =
n

∑
j=1

c jx j +E(
m

∑
i=1

pi(ηi +ρi))

sub ject to
n

∑
j=1

ai jx j +ηi−ρi = bi, i = 1,2, ...,m

n

∑
j=1

rs jx j ≥ hs,s = 1,2, ..., l

x j ≥ 0, j = 1,2, ...,n

ηi,ρi ≥ 0, i = 1,2, ...,m

Further, it can be stated as

min : z̃ =
n

∑
j=1

c jx j +E(
m

∑
i=1

pi(| bi−
n

∑
j=1

ai jx j |)) (3.31)

subject to

n

∑
j=1

rs jx j ≥ hs,s = 1,2, ..., l(3.32)

x j ≥ 0, j = 1,2, ...,n(3.33)

where it is assumed that the first stage decision variable x j ( j = 1,2, ...,n) are deterministic and the second

stage decision variables yi (i = 1,2, ...,m) are random in the problem, E is used to represent the expected

value associated with the random variables bi (i = 1,2, ...,m).

The deterministic model of the two-stage programming problem when the right hand side parameter

of i-th constraint bi follows either two parameter exponential distribution or three parameter gamma

distribution can be obtained as follows.
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3.2.1 When bi follows two parameter exponential distribution

It is assumed that bi (i = 1,2, ...,m) are independent random variables which follows two parameter ex-

ponential distribution with parameters θi and σi, whose mean, variance and probability density function

(pdf) are given by (3.11), (3.12) and (3.13) respectively.

First we compute E(pi | yi |)) = piE(| bi− gi |) (i = 1,2, ...,m) using above pdf of the i− th random

variable bi, where gi =
n
∑
j=1

ai jx j (i = 1,2, ...,m) and gi ≥ 0.

E(| bi−gi |) =
∫

∞

θi

(| bi−gi |) f (bi)dbi, as bi ≥ θi (3.34)

Integrating (3.34), we obtain

E(| bi−gi |) =

{
−(θi +σi)+gi +2σi exp

(
θi−gi

σi

)
, if gi ≥ θi

(θi +σi)−gi, if gi < θi

(3.35)

where gi =
n
∑
j=1

ai jx j, (i = 1,2, ...,m).

Using (3.35) in model (3.31)-(3.33), we can have two deterministic two-stage stochastic programming

models as:

Model-I: If gi ≥ θi, then the corresponding deterministic model is:

min : z̃ =
n

∑
j=1

c jx j +
m

∑
i=1

pi

[
− (θi +σi)+gi +2σi exp

(
θi−gi

σi

)]
(3.36)

subject to

n

∑
j=1

ri jx j ≥ hs,s = 1,2, ..., l(3.37)

x j ≥ 0, j = 1,2, ...,n(3.38)

where gi =
n
∑
j=1

ai jx j, (i = 1,2, ...,m) .

Model-II: If gi < θi, then the corresponding deterministic model is:

min : z̃ =
n

∑
j=1

c jx j +
m

∑
i=1

pi

[
(θi +σi)−gi

]
(3.39)
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subject to

n

∑
j=1

ri jx j ≥ hs,s = 1,2, ..., l(3.40)

x j ≥ 0, j = 1,2, ...,n(3.41)

where gi =
n
∑
j=1

ai jx j, (i = 1,2, ...,m) .

3.2.2 When bi follows three parameter gamma distribution

Here, we assume that bi, i = 1,2, ...,m are independent random variables which follows three parameter

gamma distribution with parametersαi,βi and θi, whose mean, variance and probability density function

(pdf) are given by (3.19), (3.20) and (3.21) respectively.

We compute E(pi | yi |)) = piE(| bi−gi |) ,(i = 1,2, ...,m) using above pdf of the i− th random variable

bi where gi =
n
∑
j=1

ai jx j, (i = 1,2, ...,m) and gi ≥ 0.

E(| bi−gi |) =
∫

∞

θi

(| bi−gi |) f (bi)dbi, as bi ≥ θi (3.42)

Integrating (3.42), we obtain

E(| bi−gi |) =


−(αiβi +θi)+gi + exp

(
−(gi−θi)

βi

)[
2αiβi

αi

∑
k=0

1
k!

(
(gi−θi)

βi

)k
+2θi

αi−1
∑

k=0

1
k!

(
(gi−θi)

βi

)k
−2gi

αi−1
∑

k=0

1
k!

(
(gi−θi)

βi

)k
]
, if gi ≥ θi

(αiβi +θi)−gi, if gi < θi
(3.43)

where gi =
n
∑
j=1

ai jx j, i = 1,2, ...,m .

Using (3.43) in model (3.31)-(3.33), we can have two deterministic two-stage stochastic programming

models as:

Model-(i): If gi ≥ θi, then the corresponding deterministic model is:

min : z̃ =
n

∑
j=1

c jx j +
m

∑
i=1

pi

[
− (αiβi +θi)+gi + exp

(−(gi−θi)

βi

)[
2αiβi

αi

∑
k=0

1
k!

((gi−θi)

βi

)k

+2θi

αi−1

∑
k=0

1
k!

((gi−θi)

βi

)k
−2gi

αi−1

∑
k=0

1
k!

((gi−θi)

βi

)k]] (3.44)
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subject to

n

∑
j=1

ri jx j ≥ hs,s = 1,2, ..., l(3.45)

x j ≥ 0, j = 1,2, ...,n(3.46)

where gi =
n
∑
j=1

ai jx j, (i = 1,2, ...,m).

Model-(ii) If gi < θi, then the corresponding deterministic model is:

min : z̃ =
n

∑
j=1

c jx j +
m

∑
i=1

pi

[
(αiβi +θi)−gi

]
(3.47)

subject to

n

∑
j=1

ri jx j ≥ hs,s = 1,2, ..., l(3.48)

x j ≥ 0, j = 1,2, ...,n(3.49)

where gi =
n
∑
j=1

ai jx j, (i = 1,2, ...,m).

3.3 Numerical Examples

In the following Section, we present some numerical examples to illustrate the models and methodology

described in the previous sections.

3.3.1 Example -1: Chance constrained programming problems

Case-(I):Two parameter exponential distribution

Here, we consider a CCP problem where the right hand side parameter of the constraints follow two

parameter exponential distribution.

max : z = 5x1 +8x2 +7x3 (3.50)
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subject to

Pr(2x1 +6x2 +5x3 ≤ b1)≥ 0.99(3.51)

Pr(5x1 +11x2 +4x3 ≤ b2)≥ 0.95(3.52)

Pr(4x1 +5x2 + x3 ≤ b3)≥ 0.90(3.53)

x j ≥ 0, j = 1,2,3(3.54)

Here, we assume that bi (i = 1,2,3) are random variables following two parameter exponential distribu-

tion with following parameters:

E(b1) = 161,E(b2) = 144,E(b3) = 106 and

Var(b1) = 25,Var(b2) = 36,Var(b3) = 64.

Using (3.11) and (3.12), the parameters are calculated as follows:

θ1 = 156,σ1 = 5, θ2 = 138,σ2 = 6, θ3 = 98 and σ3 = 8.

Now, using (3.15)-(3.18), the equivalent deterministic model of (3.50)-(3.54) can be formulated as fol-

lows:

max : z = 5x1 +8x2 +7x3 (3.55)

subject to

2x1 +6x2 +5x3 ≤ 156.05(3.56)

5x1 +11x2 +4x3 ≤ 138.308(3.57)

4x1 +5x2 + x3 ≤ 98.4103(3.58)

x j ≥ 0, j = 1,2,3(3.59)

The above deterministic model is solved by LINGO(11.0) [27] and MAPLE software and the optimal

solution are found as follows:

x∗1 = 0.0,x∗2 = 10.07921,x∗3 = 6.859181 and the value of the objective function is Z∗ = 128.6749.

Case-(II): Three parameter gamma distribution
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Here, we consider a CCP problem where the right hand side parameter of the constraints follow three

parameter gamma distribution.

max : z = 5x1 +8x2 +7x3 (3.60)

subject to

Pr(3x1 +6x2 +5x3 ≤ b1)≥ 0.99(3.61)

Pr(5x1 +3x2 +4x3 ≤ b2)≥ 0.95(3.62)

Pr(4x1 +5x2 +7x3 ≤ b3)≥ 0.90(3.63)

x j ≥ 0, j = 1,2,3(3.64)

Here, we assume that bi (i = 1,2,3) are random variables following three parameter gamma distribution

with following parameters:

α1 = 3,β1 = 20,θ1 = 15, α2 = 2,β2 = 30,θ2 = 9, α3 = 3,β3 = 25 and θ3 = 17. The means and variances

of random variable bi, i = 1,2,3 are :

E(b1) = 75,E(b2) = 69,E(b3) = 92 and

Var(b1) = 1200,Var(b2) = 1800,Var(b3) = 1875.

Now, using (3.23)-(3.26), the equivalent deterministic model of (3.65)-(3.64) can be formulated as fol-

lows:

max : z = 5x1 +8x2 +7x3 (3.65)

subject to

exp

(
−(g1−15

20

)(
2

∑
k=0

1
k!

(g1−15
20

)k
)
≥ 0.99(3.66)

exp

(
−(g2−9

30

)(
1

∑
k=0

1
k!

(g2−9
30

)k
)
≥ 0.95(3.67)

exp

(
−(g3−17

25

)(
1

∑
k=0

1
k!

(g3−17
25

)k
)
≥ 0.90(3.68)

x j ≥ 0, j = 1,2,3(3.69)
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where g1 = 3x1 +6x2 +5x3, g2 = 5x1 +3x2 +4x3 and g3 = 4x1 +5x2 +7x3.

The above deterministic model is solved by LINGO(11.0) and MAPLE software and the optimal solu-

tions are found as follows:

x∗1 = 2.22868,x∗2 = 2.839142,x∗3 = 0.0 and the value of the objective function is Z∗ = 33.85655

3.3.2 Example -2: Two-stage stochastic programming problems

Case-(I):Two parameter exponential distribution

In this Section, we have considered two numerical examples to verify the solution procedure of the above

two-stage stochastic programming (TSP) models by considering only the right hand side parameter as

two parameter exponential distribution and three parameter gamma distribution. Consider the following

TSP problem:

min : z = 5x1 +8x2 +7x3 (3.70)

subject to

7x1 +2x2 +5x3 ≤ b1(3.71)

5x1 +3x2 +4x3 ≤ b2(3.72)

3x1 +4x2 +2x3 ≤ b3(3.73)

6x1 + x2 +4x3 ≤ 40(3.74)

4x1 +2x2 +3x3 ≥ 35(3.75)

x j ≥ 0, j = 1,2,3(3.76)

where, it is assumed that b1,b2 and b3 are independent two parameter exponential random variables with

given means and variances as:

E(b1) = 54,E(b2) = 48,E(b3) = 38 and

Var(b1) = 2025,Var(b2) = 1600,Var(b3) = 1024.
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Using (3.11) and (3.12), the parameters are calculated as follows:

θ1 = 9,σ1 = 45, θ2 = 8,σ2 = 40, θ3 = 6 and σ3 = 32.

Now, using (3.36)-(3.38), the equivalent deterministic model of (3.70)-(3.76) can be formulated as fol-

lows:

min : z̃ = 5x1 +8x2 +7x3−54+g1 +90exp
(9−g1

45

)
−48+g2 +80exp

(8−g2

40

)
−38+g3 +66exp

(6−g3

32

) (3.77)

subject to

6x1 + x2 +4x3 ≤ 40(3.78)

4x1 +2x2 +3x3 ≥ 35(3.79)

x j ≥ 0, j = 1,2,3(3.80)

where g1 = 7x1 + 2x2 + 5x3, g2 = 5x1 + 3x2 + 4x3 and g3 = 4x1 + 4x2 + x3. Here we have taken p1 =

p2 = p3 = 1.

The above deterministic model is solved by LINGO(11.0) and MAPLE software and the optimal solu-

tion are found as follows:

x∗1 = 5.625,x∗2 = 6.25,x∗3 = 0.0 and the value of the objective function is Z∗ = 164.5891.

Case-(II):Three parameter gamma distribution

In the above two-stage stochastic programming model (3.70)-(3.76), the right hand side parametersb1,b2,b3

are assumed to be random variables following three parameter gamma distributions with the following

parameters:

α1 = 3,β1 = 15,θ1 = 9 α2 = 2,β2 = 20,θ2 = 8, α3 = 2,β2 = 16 and θ3 = 6.

The means and variances of random variable bi, i = 1,2,3 are :

E(b1) = 54,E(b2) = 48,E(b3) = 38 and

Var(b1) = 675,Var(b2) = 800,Var(b3) = 512.
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Now using (3.44)-(3.46), the equivalent deterministic model of (3.70)-(3.76),can be formulated as fol-

lows:

min : z̃ = 5x1 +8x2 +7x3−54+g1 + exp
(−(g1−9)

15

)[
90

3

∑
k=0

1
k!

(g1−9
15

)k

+18
2

∑
k=0

1
k!

(g1−9
15

)k
−2g1

2

∑
k=0

1
k!

(g1−9
15

)k]
−48+g2 + exp

(−(g2−8)
20

)[
80

2

∑
k=0

1
k!

(g2−8
20

)k

+16
1

∑
k=0

1
k!

(g2−8
20

)k
−2g2

1

∑
k=0

1
k!

(g2−8
20

)k]
−38+g3 + exp

(−(g3−6)
16

)[
64

2

∑
k=0

1
k!

(g3−6
16

)k

+12
1

∑
k=0

1
k!

(g3−6
16

)k
−2g3

1

∑
k=0

1
k!

(g3−6
16

)k]

(3.81)

subject to

6x1 + x2 +4x3 ≤ 40(3.82)

4x1 +2x2 +3x3 ≥ 35(3.83)

x j ≥ 0, j = 1,2,3(3.84)

where g1 = 7x1 + 2x2 + 5x3, g2 = 5x1 + 3x2 + 4x3 and g3 = 4x1 + 4x2 + x3. Here we have taken p1 =

p2 = p3 = 1.

The above deterministic model is solved by LINGO(11.0) and MAPLE software and the optimal solution

are found as follows:

x∗1 = 5.625,x∗2 = 6.25,x∗3 = 0.0 and the value of the objective function is Z∗ = 101.0922

.

4 Conclusions

In this study, we have considered a chance constrained programming problem and a two-stage pro-

gramming problem, where right hand side parameters b′is are random variables following two parameter
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exponential distribution or three parameter gamma distribution. All other parameters of the model are

assumed to be deterministic. Solution procedures for both the chance constrained programming problem

and two-stage stochastic programming problem have been presented. Four different deterministic mod-

els, two each for different random variables have been established and examples are provided to illustrate

the methodologies. The problem can be solved by using other distribution functions. One can consider

c j and ai j as random variables in the problem, instead of bi. Some heuristic techniques such as genetic

algorithm (GA), neural network (NN), Tabu Search (TS) can be applied to solve CCP and TSP problems

directly without transforming it to a deterministic model. The study can be extended for nonlinear chance

constrained problem and in hierarchical decision making framework.
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Abstract

Objective of the paper is to determine the lower and upper bound of the optimal value of a

general optimization problem in which parameters of the objective function and constraints

are closed intervals. Duality theory is used to construct the upper and lower level problems.

The methodology is verified with an interval quadratic programming problem.
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1 Introduction

Most of the optimization models in real life situations have ambiguities in the input data set, which may

be considered as linguistic variables or random variables. Recently many researchers have accepted

these uncertain parameters in the form of intervals, whose end points are estimated from the histor-

ical data. These type models are known as interval optimization problems. Objective function and

constraints of an interval optimization problem are interval valued functions. Several methods have
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been developed to handle these interval parameters while solving the optimization models with inter-

vals. Ishibuchi and Tanaka [7] studied linear interval optimization problem with a deterministic feasible

set and obtained the Pareto optimal solutions by solving a bi-objective programming problem in terms of

the mean and width of the objective of the problem, which is further extended by Inuiguchi and Sakawa

[6] using minimum regrate method. Chanas and Kuchta [3] generalized the Ishibuchi and Tanaka [7]’s

concepts using parametric representation of the intervals.

Sengupta et al. [13] determined the optimal solution by transforming the original model to an equivalent

deterministic form using acceptability index of the intervals. Allahdadi and Nehi [1] obtained the set of

all possible optimal solutions of this model.

An interval optimization problem, in which either objective function or at least on constraint is a non-

linear function, is called as nonlinear interval optimization problem. Liu and Wang [11] considered an

interval quadratic programming problem in which quadratic part of the objective function is free from

uncertainty and obtained the optimal bounds of the problem. Li and Tian [10] generalized the Liu and

Wang [11]’s method for a general interval quadratic programming problem. Jiang et al. [9] solved a gen-

eral nonlinear interval optimization model by solving a corresponding bi-objective programming prob-

lem in terms of the mean and width of the intervals. Hladik [5] obtained the bounds of the optimal value

of the problem. Bhurjee and Panda [2] developed a methodology to discuss the existence of an efficient

solution. Jana and Panda [8] discussed a methodology to obtain one preferable efficient solution using

some preference function.

Since, an interval optimization problem is a family of infinitely many deterministic optimization prob-

lems, so one solution may not optimize all these deterministic problems. Hence, in this paper we develop

a methodology to determine the optimal bounds of a general interval optimization problem in which

the objective function and constraints may be linear or nonlinear function with all data represented as

closed intervals. Lower and upper bounds of the optimal value of the problem are computed by solving

two deterministic optimization problems. The developed methodology is applied in a general interval
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quadratic programming problem to find its optimal range.

2 Notations and Preliminaries on Interval Analysis

Throughout the paper the following notations are used:

Bold capital letters denote closed intervals, and small letters denote real numbers;

I= The set of all closed intervals in R; Ik = The product space I× I× . . .× I︸ ︷︷ ︸
k times

;

Ck
v = k dimensional column vector whose elements are intervals. That is,

Ck
v ∈ Ik , Ck

v = (C1,C2, . . . ,Ck )T , C j = [cL
j ,cU

j ], j ∈Λk , Λk = 1,2, . . . ,k.

Let ∗ ∈ {+,−, ·,/} be a binary operation on the set of real numbers. The binary operation ~ between two

intervals A = [aL , aU ] and B = [bL ,bU ] in I, denoted by A~B is the set {a ∗b : a ∈ A,b ∈ B}. In the case of

division, A/B, it is assumed that 0 ∉ B. An interval can be expressed in terms of a parameter in several

ways. Any point in A may be expressed as at , where at = aL + t (aU −aL), t ∈ [0,1]. Throughout this paper

we consider a specific parametric representation of an interval as

A = [aL , aU ] = {at | t ∈ [0,1]}.

Using the parametric concepts of interval, the algebraic operations for I can be restated as follows.

A~B = {at1 ∗bt2 | t1, t2 ∈ [0,1]}

≡
[

min
t1,t2

(at1 ∗bt2 ), max
t1,t2

(at1 ∗bt2 )
]

Hence we have

A⊕B = {at1 +bt2 | t1, t2 ∈ [0,1]},

AªB = {at1 −bt2 | t1, t2 ∈ [0,1]},

A¯B = {at1 bt2 | t1, t2 ∈ [0,1]},

kA = {kat | t ∈ [0,1]},

A®B =
{

at1 /bt2 | t1, t2 ∈ [0,1], a(t2) 6= 0
}

.
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Ck
v ∈ Ik is the set

{
ct | ct = (ct1 ,ct2 , . . . ,ctk )T , ct j = cL

j + t j (cU
j − cL

j ), 0 ≤ t j ≤ 1, j ∈Λk

}
. (2.1)

2.1 Interval valued function

Many authors have been defined interval valued function in several ways in the literature (see [2, 4, 12,

14]). Moore [12] and Hansen [4] defined an interval valued function as an extension of a real valued

function. However, Wu [14] considered the interval valued function, F : Rn → I as,

F(x) = [F L(x),FU (x)], where F L ,FU : Rn →R, F L(x) ≤ FU (x) ∀x ∈Rn .

Recently, Bhurjee and Panda [2] defined an interval valued function in a different way. For given Ck
v ∈ Ik ,

we define an interval valued function FCk
v

: Rn → I by

FCk
v
(x) =

{
fct (x)

∣∣∣ fct : Rn →R,ct ∈ Ck
v

}
.

Since for every fixed x, fct (x) is continuous in t so mint∈[0,1]k fct (x) and maxt∈[0,1]k fct (x), exist. In that

case

FCk
v
(x) =

[
min

t∈[0,1]k
fct (x), max

t∈[0,1]k
fct (x)

]
.

Now, we redefine the interval valued function in another way as follows.

Definition 2.1. For given Ck
v ∈ Ik , an interval valued function F(Ck

v , x) : Rn → I by

F(Ck
v , x) =

{
f (ct , x)

∣∣∣ f (ct , x) : [0,1]k ×Rn →R,ct ∈ Ck
v

}
.

For every ct , f (ct , x) is a function of x and it is continuous in t for every x. So mint∈[0,1]k f (ct , x) and

maxt∈[0,1]k f (ct , x) exist. In that case

F(Ck
v , x) =

[
min

t∈[0,1]k
f (ct , x), max

t∈[0,1]k
f (ct , x)

]
.

If f (ct , x) is linear in t then

min
t∈[0,1]k

f (ct , x) = f (c0, x) and max
t∈[0,1]k

f (ct , x) = f (c1, x)
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exist in the set of vertices of Ck
v . Then

F(Ck
v , x) =

[
f (c0, x), f (c1, x)

]
.

3 Determination of Optimal Bounds

We consider a general interval nonlinear optimization problem (G IOP ) as follows,

(G IOP ) min Z = F(Ck
v , x)

subject to G j (D
m j
v , x) ≤ B j , j ∈Λp ,

x ≥ 0, x ∈D⊆Rn
+,

where B j ∈ I and G j (D
m j
v , x) : D→ I is the set,

G j (D
m j
v , x) =

{
g j (dt ′j

, x) | g j (dt ′j
, x) : [0,1]m j ×D→R,dt ′j

∈ D
m j
v

}
.

The feasible region of G IOP can be expressed as the set,

S= {x ∈D|G j (D
m j
v , x) ≤ B j , j ∈Λp , x ≥ 0}.

Since

min
x∈S

F(Ck
v , x) ≡ min

x∈S

{
f (ct , x)| ct ∈ Ck

v , t ∈ [0,1]k
}

,

so G IOP can be treated as a multi-objective optimization problem in t for every x ∈ S over a continu-

ous domain in which there are infinitely many objective functions. Also, conflict behavior of objectives

is not necessary. Therefore, G IOP can not be treated as a multi-objective optimization problem. Fur-

ther, it is also seen that one solution may not be optimized all objectives simultaneously, so the solution

concept for G IOP is not sufficient to find the optimal solution for the problem. Therefore, we develop a

procedure to obtain the optimal value bounds of the general interval nonlinear optimization problem.
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The parametric form of G IOP is denoted by G IOPt and define as follows.

(G IOPt ) min
x

Zt = f (ct , x)

subject to g j (dt ′j
, x) ≤ bt ′′j

, j ∈Λp ,

t ∈ [0,1]k , t ′j ∈ [0,1]m j , t ′′j ∈ [0,1],

x ≥ 0, x ∈D.

The optimal value bounds of the G IOP is calculated by solving the following two deterministic problems.

The lower bound of the optimal value of G IOP can be calculated by solving the following optimization

problem:

(G IOPL) Z L = min
t , t ′j , t ′′j

min
x

f (ct , x)

subject to

g j (dt ′j
, x) ≤ bt ′′j

, j ∈Λp ,

t ∈ [0,1]k , t ′j ∈ [0,1]m j , t ′′j ∈ [0,1],

x ≥ 0, x ∈D.

The objective value Z L is lower bound of the optimal value for G IOP .

The upper bound of the optimal value of G IOP can be calculated by solving the following optimization

problem:

(G IOPU ) ZU = max
t , t ′j , t ′′j

min
x

f (ct , x)

subject to

g j (dt ′j
, x) ≤ bt ′′j

, j ∈Λp ,

t ∈ [0,1]k , t ′j ∈ [0,1]m j , t ′′j ∈ [0,1],

x ≥ 0, x ∈D.

The objective value ZU is upper bound of the optimal value for G IOP .
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3.1 Lower bound

Since the inner model and outer model of G IOPL have the same minimization type, so both models

can be combined into a deterministic optimization problem. Hence the lower bound of G IOP can be

calculated by the following problem:

Z L = min
x, t , t ′j , t ′′j

f (ct , x)

subject to

g j (dt ′j
, x) ≤ bt ′′j

, j ∈Λp ,

t ∈ [0,1]k , t ′j ∈ [0,1]m j , t ′′j ∈ [0,1],

x ≥ 0, x ∈D.

This is a nonlinear optimization problem with x, t , t ′j , t ′′j as decision variables, which can be easily solved

by existing optimization problem solvers.

3.2 Upper bound

Since the inner model and outer model of G IOPU have the different optimization directions i.e. inner

model is minimization type and outer model is maximization type, so both models can not be combined

into a deterministic optimization problem. We convert the inner optimization problem into maximiza-

tion type using duality theory for nonlinear optimization problem. The Lagrangian dual problem of the

inner problem is defined as follows.

max
λ≥0, µ≥0

inf
x∈D

{
f (ct , x)+

p∑
j=1

λ j (g j (dt ′j
, x)−bt ′′j

)−
n∑

i=1
µi xi

}
,
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where the objective function is the Lagrange dual function. Dual of the inner problem is:

max
x, λ, µ

f (ct , x)+
p∑

j=1
λ j (g j (dt ′j

, x)−bt ′′j
)−

n∑
i=1

µi xi

subject to

∂ f (ct , x)

∂xi
+

p∑
j=1

λ j

∂g j (dt ′j
, x)

∂xi
=µi , i ∈Λn ,

λ j (g j (dt ′j
, x)−bt ′′j

) = 0, λ j ≥ 0, j ∈Λp ,

µi xi = 0, µi ≥ 0, xi ≥ 0, i ∈Λn ,

t ∈ [0,1]k , t ′j ∈ [0,1]m j , t ′′j ∈ [0,1].

G IOPU can be reformulated as

ZU = max
t , t j , t ′j

max
x, λ, µ

f (ct , x)+
p∑

j=1
λ j (g j (dt ′j

, x)−bt ′′j
)−

n∑
i=1

µi xi

subject to

∂ f (ct , x)

∂xi
+

p∑
j=1

λ j

∂g j (dt ′j
, x)

∂xi
=µi , i ∈Λn ,

λ j (g j (dt ′j
, x)−bt ′′j

) = 0, λ j ≥ 0, j ∈Λp ,

µi xi = 0, µi ≥ 0, xi ≥ 0, i ∈Λn ,

t ∈ [0,1]k , t ′j ∈ [0,1]m j , t ′′j ∈ [0,1].

At this stage, both the inner and outer problems are maximization type. Therefore, the upper bound of

the optimal value of G IOP can be calculated as

ZU = max
t , t j , t ′j , x, λ, µ

f (ct , x)+
p∑

j=1
λ j (g j (dt ′j

, x)−bt ′′j
)−

n∑
i=1

µi xi

subject to

∂ f (ct , x)

∂xi
+

p∑
j=1

λ j

∂g j (dt ′j
, x)

∂xi
=µi , i ∈Λn ,

λ j (g j (dt ′j
, x)−bt ′′j

) = 0, λ j ≥ 0, j ∈Λp ,

µi xi = 0, µi ≥ 0, xi ≥ 0, i ∈Λn ,

t ∈ [0,1]k , t ′j ∈ [0,1]m j , t ′′j ∈ [0,1].
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This is a nonlinear optimization problem with x,λ,µ, t , t j , t ′j as decision variables, which can be easily

solved by existing optimization problem solver as LINGO, MATHEMATICA, MATLAB.

3.3 Numerical example

Consider the following interval quadratic programming problem,

(G IQPP ) min
x

[−10,−6]x1 + [2,3]x2 + [4,10]x2
1 + [−1,1]x1x2 + [10,20]x2

2

subject to

[1,2]x1 +3x2 ≤ [1,10],

[−2,8]x1 + [4,6]x2 ≤ [4,6],

x1, x2 ≥ 0.

The parametric form of the given problem is define as follows.

(G IQPPt ) min
x

f (ct , x)

subject to

(1+ t ′1)x1 +3x2 ≤ (1+9t ′′1 ),

(−2+10t ′2)x1 + (4+2t ′3)x2 ≤ (4+2t ′′2 ),

x = (x1, x2)T ≥ 0, t = (t1, t2, t3, t4, t5)T ∈ [0,1]5,

t ′ = (t ′1, t ′2, t ′3)T ∈ [0,1]3, t ′′ = (t ′′1 , t ′′2 )T ∈ [0,1]2,

where f (ct , x) = (−10+4t1)x1 + (2+ t2)x2 + (4+6t3)x2
1 + (−1+2t4)x1x2 + (10+10t5)x2

2 .
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The lower bound of optimal value of G IQPP is calculated by the solution of the following problem :

Z L = min
x, t , t ′, t ′′

f (ct , x)

subject to

(1+ t ′1)x1 +3x2 ≤ (1+9t ′′1 ),

(−2+10t ′2)x1 + (4+2t ′3)x2 ≤ (4+2t ′′2 ),

x = (x1, x2)T ≥ 0, t = (t1, t2, t3, t4, t5)T ∈ [0,1]5,

t ′ = (t ′1, t ′2, t ′3)T ∈ [0,1]3, t ′′ = (t ′′1 , t ′′2 )T ∈ [0,1]2.

This is a nonlinear optimization problem which can be easily solve by existing optimization solver. Using

LINGO software, the optimal solution of the above problem is

x∗
1 = 1.25, x∗

2 = 0; t = (0,0,0,0,0)T ; t ′ = (0,0,0)T ; t ′′ = (1,1)T ,

and the lower bound of the optimal value is Z L =−6.25.

The upper bound of optimal value of G IQPP is calculated by the solution of the following problem :

ZU = min
x, λ, µ, t , t ′, t ′′

f (ct , x)+λ1

(
(1+ t ′1)x1 +3x2 − (1+9t ′′1 )

)
+λ2

(
(−2+10t ′2)x1 + (4+2t ′3)x2 − (4+2t ′′2 )

)
−µ1x1 −µ2x2

subject to

(−10+4t1)+ (8+12t3)x1 + (−1+2t4)x2 +λ1(1+ t ′1)+λ2(−2+10t ′2) =µ1,

(2+ t2)+ (−1+2t4)x1 + (20+20t5)x2 +3λ1 +λ2(4+2t ′3) =µ2,

λ1

(
(1+ t ′1)x1 +3x2 − (1+9t ′′1 )

)
= 0,

λ2

(
(−2+10t ′2)x1 + (4+2t ′3)x2 − (4+2t ′′2 )

)
= 0,

µ1x1 = 0, µ2x2 = 0, x = (x1, x2)T ≥ 0,µ= (µ1,µ2)T ≥ 0,

t = (t1, t2, t3, t4, t5)T ∈ [0,1]5, t ′ = (t ′1, t ′2, t ′3)T ∈ [0,1]3,

t ′′ = (t ′′1 , t ′′2 )T ∈ [0,1]2,λ= (λ1,λ2)T ≥ 0.
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This is also a nonlinear optimization problem. Using LINGO software, the optimal solution of the above

problem is

x∗
1 = 0.3, x∗

2 = 0; t∗ = (1,0.18179,1,0.13075,0)T ;

t ′ = (1,0.28585,0.1817)T ; t ′′ = (0,0.2917)T ;λ= (0,0)L ;µ= (0,1.96)T ,

and the upper bound of the optimal value is ZU = −0.90. Hence the bounds in which optimal value of

the problem lies, is [−6.25,−0.90].

4 Conclusion

In this paper a methodology is developed to determined the optimal bounds of a general interval opti-

mization problem. This concept can be further developed to multi-objective case, which is the future

scope of the present work.
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