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Convexity of Spherical Bernstein-Bézier
Patches and Circular Bernstein-Bézier

Curves

T. X. He *and Ram Mohapatra'

Abstract

This paper discusses the criteria of convexity of spherical Bernstein-Bézier patches,

circular Bernstein-Bézier curves, and homogeneous Bernstein-Bézier polynomials.

Keywords: Spherical Bernstein-Bézier patch, spherical Bernstein-Bézier polyno-
mial, circular Bernstein-Bézier curve, homogeneous Bernstein-Bézier polynomial,

Bézier coefficient, convexity.

1 Introduction

Let S be the unit sphere in R? with center at the origin. T' = {veS:v=bwv+byva+bsvs, b; >

0} is the spherical triangle generated by the three unit vectors vy, vg, v3 € S. Here the boundary
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of T, three circular arcs, lie on great circles. Let v be a point on S*. The (spherical) barycentric

coordinates of v relative to T are the unique real numbers by, b2, and bs such that
v = biv1 + bovg + byvg (1.1)

It is clear from that the spherical barycentric coordinates of a point v on the sphere S!
are exactly the same as the trihedral coordinates of v with respect to the trihedron generated
by {v1,v2,vs}. This implies that they have the following properties (cf. [1]):

(). At the vertices vj, j=1, 2, 3, of T, b;j(v;) = d;5, i=1,2,3.

(ii). For all v in the interior of T, b;(v) > 0.

(iii). In contrast to the usual barycentric coordinates on planar triangles (which always sum up
to 1),

bi(v) + b2(v) + b3(v) > 1 if veT and v# v1, v2, vs.

For the set
f={fi:i=(i1,12,13), i1,42,i3 > 0, |i]| = i1 + 142+ i3 =n}

, an n'" degree functional spherical Bernstein-Bézier (SBB) polynomial is defined on the spherical

triangle T as follows (|1.1)).

pn(v) = Bylf;b] = Z fidi' (b), (1.2)
li|=n
where vy, v, v3 are three vertices of T, b=(by, be, bs), v=b1v1 + bava + bgvs, and
n n! i n! i1 742743 . . . .
o1 (b) = ﬁb = i!ig!ig!bi b2 bs, |i| = i1 +ig + i3 = n. (1.3)

f={f;} is called the set of Bézier coefficients of the polynomial (|1.2). If we do not restrict
{v1,v2,v3} to be on the unit sphere S, then the p,(v) shown in (1.2 is called a homogeneous

Bernstein-Bézier (HBB) polynomial of degree n on the trihedron

T = {U eR v = bivy + bovy + b3vs, b; > O}
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generated by {v1,v2,v3} ([L.1]).

In many applications, the Bézier representation is used to form parametric surface patches by

using vector-valued coefficients f={f; };—,. This will be indicated by using the boldface notation
Pn(v) = Bulf;0] = ) £} (b). (1.4)
li]=n

{(v",£i)}}ij=n is called the Bézier net of py(v). Here v' = ﬁ S8 _igve. In [1], the spherical
Bernstein-Bézier (SBB) patch was defined as the surface {p,(v)v : v € T'}. Using the notation

Elci=¢ Lmet, Where e’ is the £*" coordinate vector in R, we can rewrite p,(v)v as

. . .
prn(v)v = |.|Z+1 o] (101 ELy + igva E%y + isv3 B2 ) ciol TH(b). (1.5)
=N

Clearly, from ([1.5)), pn(v)v is also a parametric surface patch py1(v) with

1
f; = —(i;70, By + i2v2E% 1 +i3v3E>)cy, |i| =n + 1. (1.6)

d
For this reason we also called the SBB patch of degree n defined on the spherical triangle
T.In , a theory of the circular Bernstein-Bézier (CBB) polynomials is developed. In addition
to their intrinsic interest, the CBB polynomials are also useful for describing the behavior of
SBB polynomials on the circular arcs making up the edges of spherical triangles.
Let C be the unit circle in R? with center at the origin, and let A be a circular arc on C with
length less than 7 and vertices v; # vy. Let v be a point on C. Then the (circular) barycentric

coordinates of v relative to A are the unique pair of real numbers by, by such that
v = byvy + byvg. (17)

Circular barycentric coordinates have a very simple form if we express points on C in polar

coordinates. Suppose

v = (cos@l,sinel)T, vg = (cos b2, sin 92)T, (1.8)
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with 0 < 3 — 6; < 7. let v € C be expressed in polar coordinates as v = (cosf,sin#)7. The

circular barycentric coordinates of v relative to circular arc A are

N Sill(@g — 9)
bl (U) N Sin(eg — 91)7
_ sin(0 — 01)
ba(v) = sin(fs — 911)

Similarly, for a given integer n > 0, the Bernstein basis polynomial of degree n on the circular

arc A is

n(g) = <7;> b1 (0)""iba(0)', i=0,1,-- ,n.

We call

p(0) = cid}(6) (1.9)
=0

a circular Bernstein-Bézier (CBB) polynomial of degree n on the circular arc A. Given a CBB

polynomial p defined on a circular arc A, we define an associated CBB curve by

Po) =) (g ) (1.10)

sin 6
The aim of this paper is to study the convexity properties of SBB patches and obtain some
convexity criteria for HBB polynomials.
The paper is organized as follows. In Section 2, we will discuss the convexity of SBB patches
pn(v). Some properties of spherical barycentric coordinates will also be given in this section.
In Section 3, we will discuss the convexity of CBB curves. Some convexity criteria for HBB

polynomials will be shown in Section 4.

2 Convexity criteria of SBB patches

In order to discuss the convexity of SBB patches, we need the following lemmas about the

relations among the spherical barycentric coordinates of v that are defined in equation (1.1)).
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Lemma 1. Let T be a spherical triangle with vertices v; = (z;,y;,2), i = 1,2,3, let v =
(7,7,2) be a point on S, the unit sphere in R? with the center at the origin, and let the vector
b = (b1, b2, b3) be the spherical barycentric coordinates of v relative to T. Then
> bibj{vi,vy) = 1. (2.11)
1<ij<3

Proof. From equation , we have

(v,v) = (b1vy + bava + bgvs, bivy + bave + b3vs) = Z bibj(vi, vj).

1<i#j<3

Since (v,v) = 1, we obtain equation .
Lemma 2. Let T be a spherical triangle with vertices v; = (z;,y;, 2), i = 1,2,3, let v =
(x,7,2) be a point on S, the unit sphere in R® with the center at the origin, and let the vector
b = (b1,ba,b3) be the spherical barycentric coordinates of v relative to T. Then b3 can be

considered as a function of b; and by, and

bz Bi(b)

b B3(b)’ '

=1,2, (2.12)

where 3, = Zzzl bi (ve, vg), £ =1,2,3, and (vg, Vi) is the inner product of vy and vy.
Proof. It is sufficient to prove the expression of g—Zi’. Taking derivative in terms of b; on both

sides of equation (2.11]), we have
0
1<4,5<3
Expanding the left hand side of the above equation and transposing all terms with g—gf to the

right hand side, we obtain

ob
bi(v1,v1) + ba(vr, va) + b3 (v, v3) = —87?[51@3,@1) + ba(v3, v2) + b3(v3, v3)].

Thus the lemma is proved.
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Lemma 3. Let the SBB patch of f be the B,,[f, b] defined in (1.4)). Then for ¢ = 1,2,

0 . _L 0 3\e n
8@&Uﬂ—ﬂw%?ymuwm& R AGE (213)

where (3= 22:1 br(vz, vr), ¥(v, B)= i1v E' | +igua B2 | +isvs B3 |, (av, EL,, bug ER) = ab(va,
v5>Ean%, and the shift operator Ef ¢; = c; L met- Here e’ is the £*" coordinate vector in R>.

Proof. It is sufficient to prove the expression %Bn[ f;b]. Noting equation |i we have

o n! i1—114914 n! 1742710 lab3
Bt = Y8 [ s T
1 nl 1
_ b b b f —b“ bZQbZS
ﬁg(b) E ( 1<’U3,1)1> + 2<U3,02> + 3<U37U3>) ( i — 1)”2”3

|i|=n

nl

b11b12b13 1
'Ll"LQ'(’LS — 1)

— > (ba{vr,v1) + ba (v, v2) + b (vs, v3))f;
li|=n

1 . . ‘
= B3(0) Z [i1(vs, v1) B | B} 4 ig(vs, vo) BT E2 | + i3(vs, v3) E1 E3
li|=n

— v, ) EL B} —ig(v1,09) B2 EY — ig(v1,v3) EY E2 |07 (b)
1 . 1 . 2 . 3 1 3 n
= E (ll’UlE,l + ZQ’UQE,l + 13213E71) . (1)3E1 — UlEl)fi¢i (b)
Bs(0) =,

Thus equation (2.13) has been proved.

Similarly, we obtain

62 . _ 1 14 3\12¢. 41
@Bn[fvb] - [53(())]2 izz:an(UaE)aniEl - ’UZE1>] fz¢z (b)
0 0 1
+&@%;WM%A%@) (=12 (2.14)
82
oo = e Z [H V(v, B),vs By — veBY) | £} (b)

8

+ p3(b )8 nlf; ](%1 <531(b)>’
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= GOE Z [H v, E), v3EY — v, E}) | £ () (2.15)
a 1
+ b . 2.16
) B0l (5 ) (2.16)
We now denote
pi = (W, E),V3E| — VIE}f;, (2.17)
QG = W(U,E),%E% - 'UQE%>fia (218)
U, = W, E),nE} —vsEL) (v3E? —v3EL 4 (v — ) B3 ¢ (v, E))f;, (2.19)
Vi = @W(v,E),veF} —v3E?)(v3F] — v3E? 4 (vg — v1)E3,¥(v, E))f;, (2.20)
W; = (v, E),v3E} — v1E})(v3E? — v B3, (v, E))f;. (2.21)

Remark: By changing f; to f; in (2.13)-(2.21)), we obtain the corresponding partial derivatives

of B,[f;b] and the corresponding p;, ¢;, U;, Vi, and W;.

Obviously, we have

;;Bn[f;b] - 531(5 |Iz—: Pt

Bt = oo Hz_: won (b)

g;%Bn[f;b] = [Bg(lb)ngUJrW)qg()Jrﬁs ai aabl

S;Bn[f;b] - [53(1b 2”2: (Vi+ Wy)¢7 (b) + B5(b) aa 8ab2
and

1 n 4 0
= GO z:nWi@f?i( )+ Bs(b ) B " oby (ﬁ?,( b)

>

It is well known that if the Gaussian curvature of a compact surface m in R? is positive

everywhere, then surface 7 is convex (lies on one side of each tangent plane)(1.9)). In addition,
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if m is defined by r = r(u,v), a parametric vector-valued function in C?, then the Gaussian
curvature of 7 is k = (LN — M?)/(EG — F?), where E, G, F and L, M, N are respectively
the first fundamental form and the second fundamental form of 7. It is well known that L =
%(ru,rv,ruu), M = %(ru,rv,rw) N = (ru,rv,rvv) and D? = EG — F? > 0. Here (a,b,c)
is the scalar product of a, b, ¢ and is defined by (a, b,c) = (a x b, c). Therefore the Gaussian

curvature K of r = r(u,v) and LN — M2, or (ry, Ty, uy), (Tu, Ty, Toy)—(Ty, Ty, Ty )? have the

same sign. In particular, for the surface r =r(by, be)= B, [f; ], we have

0 0 0?

ry, = aleBn[f§b]7 'y, = %Bn[f;bL 'pipy = @Bn[f;b]a

etc. Thus, if (Tp,,Thy, Torby) (Tbys Thys Tooby) —(Tbys Thys Toyby)> > 0, then K > 0. By using the

notation in - from Lemma 3, we have

(Tbys Thys Ty ) (Thy s T Thoby) — (Tby s Thys Toyby )

= (I.p’ rqa rU)(rp’ rqv rV) + (I.p, rqu rU)(rp’ rq7 rW) + (rpa rqa rV)(rp, rq7 rW)u (222)

where 17 = 55 35, Pidf (0), T = g Xjimn i SF0) vV = Gige Xijen Ui 7(0),
= P Lil=a Vi @7 (0), and v = s 375, Wi 67 (0).

Denoting Vl(lj)k = (pi,qj, Ug), Vz(zj)k = (pi,qj, Vi), and Vz(j)k

(pi,qj, W), from (2.22) we

have the following theorem.

Theorem 1. If

DD DD DD DD D DR O B (2.23)

1<a<f<3 |j]=3n |s|=2n |r|=2n |t|=n |k|=n

holds for all i € Z3, |i| = 6n, where

A(Oéﬁ) (i) = v(a) (B) (i) (2) (?s) (Z;]) (;)

7,8,1,tk t,s—t,j—s ¥ kor—kji—j—r (2n)2 (3n)2 (6n)
n 2n 3n

)
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then B, [f;b] is convex over the spherical triangle T.

Proof. To prove the theorem, we need the following two representations.

Where hZ — Z|j|:

where hz = Zl]l

D ORGr0) x Y @i (h) = Y higpt(b),

li|=n li|l=m li|l=n+m

(£ x @) (;)/ (")), and

STHO®) D o) = > hidp T (b)

|i|=n lil=m |i|=n+m

o (fi9i- ])(l)/(ner) In fact,

D) x Y @i (b)
li|=m

lil=n

= >0 > (F xgi) of(D)g (D)

[i|=m |j|=n

- R )

lil=m |j]=n

- B R ()

Z —
j'[=m |jl=n /
m' -/
= szxglﬂ ( j)lbZ
[¢|=m |jl=n )
i! (n+m)! nlm!
= f X X N - . b’
mz |a|Z 5) (@ =yt (nt+m)!

= X Y ey (o (M)

[i"[=m |jl=n

(2.24)

(2.25)
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Similarly, we may obtain equation by using the same argument. Therefore,

(19 1U) = (2P x 19) - 1V

- ( 7 2 P < > qs¢?(b)) T 3 vl

- X (? P q”) (i)‘ﬁn " vt

= Eer S, B e U, ) (5 ))

= 5 5 2 (0T )
Similarly,
(001 ) = (1P x 17) - 1V

- ( 0 2 P “ > q@?(b)) ~m;w¢?<b>

) ﬁ?’(lb ' %Z;MMZ_ Vheoki- ( ><’Z>¢§n(b)/<2:> @Z)
Thus,

(rp r?, U).(rp r? r")

- o = % X))o

li|=3n |s|=2n [t|=

53(11) XY (] )(Z)&”(b)/(?f@ﬁ)z

|i|=3n |r|=2n |k|=n

PRI I

|i|=6n |j|=3n [s|=2n |r|=2n[t|=n |k|=

o gn OO

t,s—ti—s Y kyr—ki—j—
B GO N O N

" (b)-
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By using the above two representations and expression (2.18]), we immediately have

(I‘b1 »Thys Ty ) (Thy s Ty Thobs ) — (Tby s Ty Thyby )

= G 2 2 X XX X ARLMre). (220

|i|=6n |j|=3n |s|=2n |r|=2n [t|=n [k|=n 1<a<f<3
Thus Theorem 1 is proved.
From condition (2.26]), we also have the following criterion for the convexity of By, [f;b].
Theorem 2. If one of the following condition is satisfied for all 4,7,k € Z3, |i| = |j| = |k| = n,

then B, [f;b] is convex over the spherical triangle T.

@) v+ v >0, v vl vl v el v s o;

@)V + V> [V and v, + 98, > |0

Z7J7k ?.]) lj k Z] k
(iii) Sove vl o
1<a<p<3
(V) > 0, a=1,23,

where (u, v, w) is a permutation of (1, 2, 3).
Proof. Denote V( )k, {=1,2,3, by aq, b1, cq, respectively and V( ), K {=1,2,3, by as, b, co,

respectively. It is obvious that inequality ([2.23]) holds if
aiby + bica + cras + asby + bacy + coag > 0 (227)

for all 4, j, k € Z3, where |i| = |j| = |k| = n and || = |j/| = K| = n.

We can prove that inequality (2.27) holds if the following inequalities
ag+cp >0, and agby + bycy + cpap > 0, {=1,2,
hold. In fact, if the above inequalities hold, then we have

(a1 + 01)b1 > —aicy, (ag + Cg)bg > —agcy,
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and

(a1 4 c1)(az + c2)(a1ba + bica + crag + agby + bacy + caa1)
= (a1 +c1)(az + c2)[bi(az + c2) + ba(ar + ¢1) + cra2 + ajca]
= (a2 +c2)* (a1 + c1)by + (a1 + ¢1)?(az + c2)ba + cras + arco
> —ayer(ag 4+ ) — agez(ar + ¢1)? + cras + arcy

= (a102 — a201)2 Z 0.

Thus inequality (2.27)) holds.

Consequently, inequality (2.23)) holds if

which is equivalent to that the following matrix is positive definite.

1 1
V( )k + VE ])k vz(,j),k

1 1
v vl ev?

Obviously, the above matrix is positive definite if it is strictly strongly diagonally dominant,

that is, 3/
VOV > [ ana v+ 2, > |9,
Furthermore, this condition can be implied by
vi9 >0, a=1,23
i7j7k ) [

Thus, Theorem 2 is proved.

Remark 5. Equation (2.24) and inequality (2.27]) were given in [12] without any proof.
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3 Convexity criteria of CBB curvess

In this section, we will give the convexity criteria for CBB curves. Obviously, a CBB curve is
convex if and only if its curvature k > 0; i.e., the curve lies on only one side of each tangent line.
The following lemma gives the curvature k = k() of P(0) at 6, which is defined as equation
(10).

Lemma 4. Let the P(#) defined as be a CBB curve and p(f) be the associated CBB

polynomial defined in equation ((1.9). The CBB curve is convex if and only if

(p(0))* +2(5'(9))* — p(0)p"(0) = 0. (3.28)

Proof. It is sufficient to prove that the sign of the curvature of the CBB curve P() at any 6 is

Sign[k(0)] = Sign[(p(9))* + 2(0'(9))* — p(0)p" (0)]. (3.29)
Obviously, the curvature of the parametric curve P(0) = (z(0),y(0)) is

"(0)2"(0) — =" (0)y'(0)
(@'(0))% + (v (0))722

k(0) = 2
[
Since x(0) = p(#) cos# and y(0) = p() sin @, we obtain

y"(0)a'(0) — " (0)y/ ()
= [p"(0)sin 6 + 2p'(0) cos § — p(0) sin 0] [p' () cos § — p(0) sin 4]
— [p"(0) cos 6 — 2p/(6) sin 0 — p(0) cos 0][p' (0) sin  + p(0) cos 6]
= (p(h))?(sin? 0 4 cos? ) + 2(p'(0))?(sin 6 + cos? §) — p(0)p" (0)(sin? O + cos? )

= (p(9))* +2('(0))* — p(0)p" (6).

Thus the lemma is proved.

We now derive p/(6) and p” ().
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Since p(f) = Y1 ci(7)bi(6)"'ba(0)", where bi(6) = sin(fy — 6)/sin(f2 — 61) and by(f) =

sin(f — 61)/sin(62 — 01), we have

n—1
, L ' n! i1 ; cos(fy —0)
re) = ; i O 0 S
= n! i ;1 cos(0 —61)
+ £ T ST LSO e ey oy
n—1
B (n—1 i1 ; cos(f2 — 0)
= ngcl ; >b1(9) ba ()’ -
n—1
(g (g1, gy 080 = 1)
+ n £ Cz+1< i >b1(0) bg(e) Sin(eg — 91)
n—1
N L _ A _ 1401
= a6, ) 2 [cos(f — 01)ciy1 — cos(B2 — O)c;] @7~ (6).
Thus
n(n—1) =
p'(0) = —5————> [(cos(0 — 01)cip2 — cos(f2 — O)ciy1) cos( — 01)

sm2(92 —61) P
— (cos(0 — 01)ciy1 — cos(B2 — 0)c;) cos(Ba — 0)] 67 2(0)

n—1
n ' ' N
~ sin(fy — 61) D " [sin(0 — 61)cigr + sin(02 — O)ci] 67 (6)
i=0
_ n(n_lnz:Q [cos?(0 — 61)civa — 2cos(B2 — 0) cos(0 — 01)c
sin’ (0 — 1) {5 e 2 1)Cit1

+cos (02 — ) cz]qﬁ 2
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n—1

TLZ [b2(0)0i+1 + by (Q)CZ] ’L'(’r(l—z—)l)'bl (9) 1b2(9)
i=0 ' ’
n(n —1) =2
sir12((92—91 z; cos?(6 — 01)cipo — 2 cos(By — 0) cos(f — 61)cig
+ cos? (02 — ] 9
n—1 n—1
Z(i + Deiv1971(0) = ) _(n—i)cigi (0)
i=0 =0
n—2
n(n—1
si112((92—201) Z [0082(9 — 01)cit2 — 2cos(02 — 0) cos(f — 01)cit1
n—1
+ 0082(92 - Cz o7 2 Z ici ¢y (0 Z(” —1i)cig; (0)
=0
51:((7;2_—191 Z cos?(0 — 601)cipo — 2cos(fy — 6) cos(6 — 01)ciy
+ cos?(fy — ; Z ici ¢y (0 Z n —i)c;d; (0)
1=0
SH:l((ng—lel Z cos (0 — 01)ciyo — 2cos(fy — 0) cos(0 — 01)cit1

+COS2(92— )cl QS" 2 —nzcz¢n

Noting the trigonometric identities cos?(6y —6) = 1 —sin?(fy — ), cos?(0 —61) = 1 —sin?(6 —6),

and cos(fz2 — 0) cos(6 — 1) = cos(f2 — 01) + sin(fz2 — 0) sin(d — 61), we may re-write p” () into

p"(0)

sin ((92 — 91

n—2

-1
311?2((7202—;1) ; [Ciy2 — 2cos(02 — O1)cip1 + ci] &} 72(9)

n—2 n—2
(= 1) 3 b0 cirad = (0) = 2n(n = 1) 3 b0 O)eia i 0)

n—2
n(n - 1) Z bl( Cz¢n 2 - nz Cz¢z

n—2
-1)
n(n Z Civa — 2c08(02 — 01)cip1 + i) 97 2(0)
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n—2
(n—2)! i
- n(n—1) Zz; Ci+2mbl(9) ba ()
2)! ' '
— 2n(n—1) Z Cz+1 )),2,51(9)"_’_1192(9)”1
n—2 (n _ 2)
R CRRD DL e —anqu
n o 1 n—2
T sin? sin2(6 — 01) Z Civa — 2cos(02 — O1)cit1 + ci] ¢ 2(0)
n—2 .
B . ' j - n—i—2 42
iz;(z+2)(l+ 1)cito (n—i—2)!(i+2)!b1(9) bo(6)
. . } n n—i—1 i1
ZZ(Z Fhn i e (n—i—1)1(i+1)! 01(6) b2(6)
n—2 o
n(n _ 1) n—2
T sin?(0, — 0,) & Z [Cita — 2cos(f2 — 01)civ + ci] 7 2(0)
B Z(’L—lcz¢” —22 n_lcz¢n
i=0
= ) (n—i)(n—i—1)cigr(0 _”Zcz@
i=0
n o 1 n—2
- Sln 92 o 91 Z Ci+2 — 2 cos 92 — 01)62+1 + Cz] ¢n 2(9)

1=0
n

— ) i — 1) +2i(n — i) + (n— i) (n— i — 1) + n] i}’ (6)

=0
n—2

= ,7 Z Civa — 2cos(02 — 01)cit1 + ci] oI 2(0) (3.30)
— 12 ciol(0) (3.31)

By using equation (2.25)) for the case of two dimension:

ZW ngj
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= 2 ifi—jgj (n ;T; Z) ?*m(f))/(n ;;rn) (3.32)

we obtain
1 2n
PO = 5 > did™(6),
( n ) =0
where
o ()2
=0 J n—j
and
2n—2 n
nin—1
p(e)p//(e) - # Z Cj [Ci_j+2 - 2COS(92 — 91)Ci_j+1

sl () e ()

2n
-y deo) (7)
=0
2n—2 n
2n(2n —1
= o ( ) Z Cj [Ci—j+2 — 2008(02 - 91)Ci_j+1

J n—j
_ n2 iz": i\ (2n—i 2 (g)
E=T=TA /AN T VAt

Here, ¢;_j =0ifi <jori>j+n.

2]// _

For the sake of convenience, we will use the relation [(p())

2(p'(0))2 + 2p(0)p" (0) to derive
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the expression for (p/(6))?. Similar to the process of deriving equation (3.30)), we can obtain

[(p(@))Q]” _ 2n(2n — 1) QnZ—Q [diya — 2cos(0y — 01)diy1 + di] ¢2n 2(9)
( ")sin? (0 — 61) “—0 " SR
2 2n

E n
- 2n dz¢
n
2n—2 n

2n(2n — 1) 1+2\/2n—1—2
N (2n)Sln (92—91 ZZC] |:CZ]+2< .7 )( n_j >

=0 j=0

1\ /2n—1—1
— 2COS(92—91)CZ‘]'+1<Z—’T )( " Z, >
J n—7

Therefore,

= i e & 5ol ()57 O
- e () () S0)(57) e
s (()G5) =0 ) e 629

+ 1_n2§:zn:c]cz ]< >< >¢>2”( ) (3.36)

n =0 j=0
We will use the following degree-raising formula which was given in [2], to raise the degree of

the first summation in the above expression of (p(8))? + 2(p'(0))? — p(6)p” (0) to 2n.

d+2

d
=D edl(0) =3 eid (0,
1=0

=0
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where

_ 1 » . .
ei(f) = CEDCE] [i(i — 1)ej—2 4+ 2cos(f2 — 01)i(d — i + 2)ei—1

Hd—i+2)(d—i+1e],

for i =0,1,-- ,d+2.

Thus, from equation (3.33) and the degree-raising formula, we obtain

(p(0))% + 2(p’(0)) - p(0)p"(9)
- ma e e [ () -(5)
- et oness (1) (7)) ()
() - C))]
+ 2cos(fy — 61)i(2n — i) |:Ci—j+1 <2nn__ij_ 1) <(Z J; 1) B 3( J 1))
ety () (27) () ()
s “) () ()
] S e [ (GW R 6)
= e () (1) =0) (5)
e (0) () 2705 7)o
Y

1—-n z> <2n z) o
+ B cjci—j| . ¢;"(0)
my 22595 ) G
1 2n
B (27?)Sin2(02 - 91) ;Cbngz (0)7 (337)
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where
"L 0\ (2n —i - . .
a; = Z (j) (n iy )cj [b@) (i 7)ci—jra + BV (G, )eijor + 0O®, )ei; (3.38)
§=0
+b(_1) (ivj)cifjfl + b(_2) (Z»,j)Cifj,Q ) (339)
cg=0fork=-1,-2,---,—n—2ork=n+1,n+2,---,2n+2, and bg?ﬂ-e can be found from

equation (32) by using the combination formulas:

()= () o () =57 ()

In fact, for ¢ < j or j < i —n, we have b(e)(i,j) =0; for i —n < j < i, we obtain

o) = e (™2 (42 () () ()

_ m—i+ﬁM—i+j—D(@_gig$j;LD—3), (3.40)

b (4, 5) —2mwrwgh%—neﬁf;v C;v—3C;v>
_ (%1—iﬂ%1—i—1)<<$;1>(%i;f;1>
-3() (504
< 3 G ! )

= 2(n—1i+j)cos(f2 —0) [

(20 —2n 4+ 1)(i + 1)
i—j+1

(3.41)

+3(n — 2+ 25 — 1)],
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e = [en(G5)(G)-(57)
- wen—peser-a () (7)) ()
¢ ) (2) )
[
= i(i—1)=3(i—j)(i—j—1)—4i(2n — i) cos® (6 — 6)
+ 12(i—j)(n —i+ j)cos*(By — 61) 4+ (2n —3)(2n — i — 1)
— 3n—it+Hn—it+j—1)+ (1 —n?)sin?( —6)
= i(i—-1D+2n—9)2n—i—1)+1—n? (3.42)
— 3li—-Ni—j-D+n—i+i)(n—i+j—1) (3.43)
+ cos*(02 — 01) [n® — 1+ 4i(2n — i) —12(i — j)(n — i + )] , (3.44)
o = e on [ () (7,2 (59 ()
a0 () =W D)VOEE
— i — j)cos(0s — 0y) [(2" _?_*Zi)(j’l_l ) (3.45)
~3(n — 20 + 25 +1)], (3.46)
e = ()57 S C5)) GG) e
e I

From [7], we have the following positivity criterion for CBB polynomial

p(0) = > iz @it} (0).



22 T. X. He, Ram Mohapatra

If

9 n—1 n—1 in
agp + (n —1)! <n> Z 71.!(71_1.)!%20

=1
a; <0
2\"N R (n—i)n
— I = B
a;%O

then p(6) > 0. Therefore, from Lemma 4 and equation (3.37]) we obtain the following convexity

criterion for p(6).

Theorem 3. Let the P(6) defined in (1.10)) be a CBB curve and p(#) be the associated CBB

polynomial defined in equation (1.9)). If

e ()

2n 2n—4)
a;%O
2 \ 1 (20 — 4)2n
on — 1)1 [ — MR >
azn + (20 =1) <2n> Z} izn "=
a;io

where a; is defined by (3.38)-(3.47)), then the CBB curve P(#) is convex.
If we use the positivity criterion given in [11] (if

n—1 .
1

=1
a; <0

and
n—1

=1
a; <0

then p(f) > 0), we have another convexity criterion for p(6), which is as follows.

Theorem 4. Let the P(f) defined in (1.10) be a CBB curve and p(#) be the associated CBB

polynomial defined in equation ((1.9). If

2n—1 .
1
2n —1)! — a4, >0
ao + (2n );i!@n—i)!al_
a{%ﬂ
and
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2n —1
—_1)\! § _ - " g
a2n+ (2n 1) 2 Z'(Q?’L — Z.)!az Z 07
a?<0

where a; is defined by (3.38))-(3.47)), then the CBB curve P(6) is convex.

4 Convexity criteria of HBB polynomials

In Section 1, we have shown that if T is a trihedron generated by {vi,ve,v3} and if by (v), ba(v),

b3(v) denote the trihedron coordinates, i.e.,
T ={v € R>:v=bv + byvy + bvs, b; >0},
then the HBB polynomials of degree n can be written as

pa(v) = D @i} (b). (4.49)

li|=n

Here ¢}" was defined in equation in Section 1. In this section, we will discuss the convexity
criteria of HBB polynomial (ref39). Since a positively homogeneous convex function is called a
gauge function, these convexity criteria can be also considered as conditions for making a HBB
polynomial a gauge function (cf. [4]).

In the following, we will use the notation D, = 718% + 728% + 73%, where v = (71, 72,73). For
v =y £ =1,2,3, we denote Dy = D, = D,,. If we define that Eya; = a; ¢, where e’ denotes
the ¢t coordinate vector in R?, we have

Dipn=n Y B¢} '(b). (4.50)

li|l=n—1

For any direction V, there exists a vector cy = (¢, ¢2, ¢3) such that

S
V= ZC@U@. (4.51)
(=1
Thus, from (4.51)), we have
D\z/'pn = n(n - 1) Z CgQi,aCV¢?72(b)v (4'52)

[i|=n—2
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where ¢y = (c1, 2, ¢3)T and

Qia = (EyEya;)>? (4.53)

u,w=1

for |i| =n — 2.
Obviously, p,(v) is convex on 7' if and only if Dp,(v) > 0 for any directional vector V and at

any point v € 7. Denoting ¢; o(cv) = chch, we have

Dipa(v) =n(n—1) Y gialev)df 2 (b). (4.54)

li|l=n—2

We define a function cy associated with g; r(c) as follows:

0 if giq (cv) >0,
wiq(cy) =
1 if Qi (Cv) <0

where |i| =n—2and iy #n—2,0=1,2,3. If |il =n—2and iy = n — 2 for £ = 1,2,3, then
wi,a(cv) =1.
The following two inequalities about ¢['(b), (46) and (47), were obtained in [7] and [11],

respectively, by using inequalities from [6, p. 17].

0 <o) < NS iy (4.55)
’ =1
3
0<orm) < oS iy (4.56)
’ =1

We now give some convexity criteria for the homogeneous Bernstein-Bézier polynomials over
triangle T.
Theorem 5. Let r; € {0,1} for |i| = n —2 and i # (n — 2)e’, £ = 1,2,3, and r; = 1 for

i = (n—2)e, £ =1,2,3. The Bernstein-Bézier polynomial p,(v) shown in (39) is convex on T
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if for all u € {1,2,3} its Bézier coefficients satisfy either

n—2

5 2
; g
)3 (z) B>
lij=n—2 \£=0 ’

n—2

Z Z (Zz€> ;EuEwai and (48) (4.57)

w=1,2,3 ||i|=n—2
w#u

S n2
. T
> (Ejﬁ) F EuEwai— Y |EyByail | > 0. (4.58)
li|=n—2 \¢=0 ' w:i,g,g

Proof. It is sufficient to prove inequality (4.57)), since inequality (4.58]) is implied by inequality

(4.57). Noting inequality (4.55)), we have

1

mD\Q/pn(U)
= Y Gialcv)of 2 (d)
li|=n—2
> Z Gia(cv)wia(cy)dl 2 (b)
li|l=n—2
3
> > Gia(Cv)Wialev) o —v 3 (ZMM)
li|=n—2 (=1
3 3 nzl
> Z Qla(cV)wza(cV — (Zﬁ) (Zl%)
|i|=n—2 =1 1
3 232 a2
- &f”(zb) |3 (5) " e, o
=1 Lli|[=n—2
n—2 - 72 3,3
3 T =
= m (;b?) C‘T/ Z (ZZZ> wmz(cv)E E,a; cy.
= =n—2 u,w=1

Obviously, if the last symmetric matrix is strongly diagonally dominant, i.e., for all u = 1,2, 3,

7L2

3 (Z zg> w“Z(CV)E Eya; >

|i|=n—2

n—2

Z Z (iﬁ) 2 inC;'(CVEuEwaia
£=0 ’

w=1,2,3 ||i|=n—2
wHu
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then the matrix

n—2 3,3

3 T’LU' (C)
il=n—2 \=1 " o

is semi-positive definite. Thus DZp,(v) > 0 and p,(v) is convex. Obviously, the above condition
is implied by inequality . Thus, Theorem 5 is proved.

Similarly, we may use inequality to obtain the following result.

Theorem 6. Let r; € {0,1} for |i| = n —2 and i # (n — 2)e’, £ = 1,2,3, and r; = 1 for
i = (n—2)e’, £ =1,2,3. The Bernstein-Bézier polynomial p,(v) shown in is convex on 7’
if for £ =1,2,3 and v = 1,2, 3, its Bézier coeflicients satisfy either

i
Z ﬁri B Eya; >

li|=n—2
iy
’UJ:1,273 |'L|:7'L—2 ’
wH#u
or
i
> an E,Eya;— Y |EuEwail| >0. (4.60)
fij=n—2 " w=1,2,3

wH#u

Proof. It is sufficient to prove inequality (4.59)), since inequality (4.60]) is implied by inequality

(4.59). Noting inequality (4.56)), we have

1

mD%pn@)
= Y Gialev)dp 3 (d)
li|l=n—2

> > gialev)wia(ey)d) ()

li|l=n—2
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3

> 3 gualermialer) " S i
|i|=n—2 t=1
3 [ .
= (n—23)! Z by el Z %wi,a(cV)Qi,a cy
=1 li|=n—2
3 I . 33
= (n—3)! Z b?_ch Z Z—fww(cv)EuEwai cy
(=1 _\i\:an u,w=1

Obviously, if the last symmetric matrix is strongly diagonally dominant, i.e., for all u = 1,2, 3,

iy
Z ﬁ wi,a(cV)EuEuaiZ

lij=n—2

> 1> %wi,a(cV)EuEwaia

w=1,2,3 ||i|l=n—2
wH#u

then the matrix

3,3
1

1.
Z 5wi,a(CV)EuEwai

li}=n—2 u,w=1

is semi-positive definite. Thus D p,,(v) > 0 and p,(v) is convex. Obviously, the above condition
is implied by inequality (4.59). Thus, Theorem 6 is proved.
Remark 4. A stronger convexity condition is implied by inequalities (4.58) and (4.60) as

follows: E,Eya; > > w=123 | EyEwa; |. Here, u=1,2,3.

wH#u
Remark 5. The conditions given in Theorem 5 and Theorem 6 are independent (see [7] and
[8])-

Remark 6. There is another approach for finding convexity criteria from the positivity criteria
and is shown in [8] for plane BB polynomials. This approach can also be applied here for HBB

polynomials.
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1 Introduction

This communication primarily deals with a new class of generalized second-order (¢, 7, p, 0, m)-
invex functions, which is applied to establish a set of second-order necessary optimality condi-
tions leading to several sets of second-order sufficient optimality conditions and theorems for

the following discrete minmax fractional programming problem:

(P) Minimize max filw)
1<i<p gi(w)

subject to  Gj(x) <0, jegq, Hi(r)=0, ker, xe X, where X is an open convex subset
of R™ (n-dimensional Euclidean space), fi, gi, i € p={1,2,...,p},

Gj, j € ¢, and Hy, k € r, are real-valued functions defined on X, and for each i € p, g;(z) > 0
for all = satisfying the constraints of (P).

The first part of this presentation deals with a new notion of the generalized (¢,n, p, 0, m)-
invexities, which generalizes/unifies most of the existing generalized invexities and variants in
the literature, while the second part deals with investigating the second-order optimality and
duality of our principal problem (P) as well as its semi infinite counterpart in a series of papers.
We begin our investigation here by establishing a set of second-order parametric necessary
optimality conditions and several sets of sufficient optimality conditions for (P). The results
thus obtained here in this communication seem to be new to context of results available in the

literature.

2 Preliminaries

Verma and Zalmai [27] introduced the notion of the generalized (¢, m, p, 8, m)-invexities, and
applied to establish a class of second order parametric necessary optimality conditions as well as
sufficient optimality conditions for a discrete minmax fractional programming problem using the

general frameworks for the (¢, 7, p, 0, m)-invexities. In this section, we first generalize the notion
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of the generalized (¢,n, p, 0, m)-invexities, and then recall some important auxiliary results for

the problem (P).

Definition 2.1 Let f be a differentiable real-valued function defined on R™. Then f is said to
be n-invex (invex with respect to n) at y if there exists a function n: R™ x R™ — R™ such that

for each x € R",

f(@) = fy) = (V) n(z,v)),

where Vf(y) = (0f(y)/0y1,0f(y)/0y2,...,0f(y)/Oyn) is the gradient of f aty, and (a,b)
denotes the inner product of the vectors a and b; f is said to be n-inver on R™ if the above

wnequality holds for all x,y € R™,

From this definition it is clear that every differentiable real-valued convex function is invex
with n(x,y) = x —y. This generalization of the concept of convexity was originally proposed by

Hanson [6] who showed that for a nonlinear programming problem of the form

Minimize f(z) subject to g;(z) <0, i € m, = € R",

where the differentiable functions f, ¢g; : R™ — R, i € m, are invex with respect to the same
function 7 : R” x R” — R"™, the Karush-Kuhn-Tucker necessary optimality conditions are also
sufficient.

Let f be a twice differentiable real-valued function defined on R™. Now we introduce the new
classes of generalized second-order hybrid invex functions which seem to be application-oriented
to developing a new optimality-duality theory for nonlinear programming based on second-
order necessary and sufficient optimality conditions. We shall abbreviate ”second-order invex”

as sonvex. Let f: X — R be a twice differentiable function.

Definition 2.2 The function f is said to be (strictly) (¢,n, p, 0, m)-sonvex at x* if there exist

functions  :R >R, p: X x X - R, and n,0 : X x X — R", and a positive integer m such
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that for each x € X (x # x*) and z € R™,
S(f(@) — @)+ H(VF).2))(>) = (V) + LV f ()2 e a) + ol 2) 0, 2)] "

Definition 2.3 The function f is said to be (strictly) (¢,n, p, 0, m)-pseudosonvex at z* if there
exist functions ¢ :R = R, p: X x X = R, and n,0 : X x X — R", and a positive integer m

such that for each x € X (x # x*) and z € R",

* 1 * * * * m
(V") + §V2f(iv )z, (@, x%)) = —p(x,2°)|0(z, 2")||
* 1 *
= o(f(z) = (&) + 5(VI(@"),2))(>) 2 0.
Definition 2.4 The function f is said to be (prestrictly) (¢,n,p,0, m)-quasisonvex at x* if
there exist functions ¢ :R - R, p: X X X = R, and n,0 : X x X = R", and a positive integer
m such that for each x € X and z € R",
* 1 *
B(F(x) — F(a) + 5 (VF(a"),2))(<) < 0=

(Vf(z") + %VQf(w*)zm(x,fv*D < —p(a, ") [0z, )™,
equivalently
(Vf(z") + %VQf(w*)Z,n(%ﬂf*» > —p(a,2")|[0(z, 2")[™
= 9(f(a) — F) + (V7)) (2) > 0.

We need to recall the following auxiliary results which are needed for establishing our main

results based on generalized invexity to the context of minmax fractional programming.

Lemma 2.1 [27] Let \* be the optimal value of (P), and let v(\) be the optimal value of (P\)
for any fized A € R such that (P\) has an optimal solution. Then the following statements are

valid:

(a) If x* is an optimal solution of (P), then it is an optimal solution of (PA*) and v(A\*) = 0.
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(b) If (P)\) has an optimal solution T for some A € R with v(\) = 0, then T is an optimal

solution of (P) and X\ = \*.

It is clear that (P)) is equivalent to the following problem:
(EPX) Minimize p

subject to z € F and fi(z) — Agi(z) —p <0, i € p.

Theorem 2.1 [27] Let x* be an optimal solution of (P), let \* = maxi<i<p fi(z*)/gi(z*), and
assume that the functions f;, gi, i € p, Gj, j € q, and Hy, k € r, are twice continuously
differentiable at x*, and that the second-order Guignard constraint qualification holds at x*.

Then for each critical direction z*, there exist u* € U, v* € RL, and w* € R" such that
q

D urVi(a*) = XVgi(a*)] + Y 0iVG;(x) + ) wiVH(x*) =0, (2.1)
i=1

j=1 k=1

<z*, { Zuf [V2fi(z*) — N*V2g;(x*)] + Zv;szj(m*) + Z wZVQHk(a:*)}z*> >0, (2.2
i=1

j=1 k=1
ui[fi(z") — A gi(z")] =0, i€ p, (2.3)
v;-‘GJ(Q:*):O, JEq (2.4)

3 Sufficient Optimality Conditions

In this section, we present several second-order sufficiency results in which various generalized
hybrid (¢, z, p, 8, m)-sonvexity assumptions are imposed on the individual as well as certain
combinations of the problem functions.

For the sake of the compactness, we shall use the following notations during the statements as



36 Ram U. Verma

well as the proofs of sufficiency theorems:

= v;Gj(x)

.
—_

Di(z,w) = wpHg(x),

w) = Z wi Hy ()
k=1

Ei(z,A) = fi(z) = Agi(x),

E(w,u,\) =) wilfyx) = Agi(a)],

i=1

MQ

G(z,v,w) = v;Gj(z Zwkﬂk

J=1

Ii(u)={ic€p:u; >0}, Jy(v)={j€q:v; >0}, Ki(w)={ker: w# 0}

During the course of proofs for our sufficiency theorems, we shall use the following auxiliary

result which provides an alternative expression for the objective function of (P).

Lemma 3.1 [27] For each x € X,

— max fi(z) > by uifi(z)
go(x) - 1<i<p gz(x) uelU Zle uzgz(m)

Theorem 3.1 Letx* € F, \* = ¢(z*) > 0, the functions f;, gi, i € p, Gj, j € q, and Hy, k €,
be twice differentiable at x*. Assume that for each critical direction z*, there exist u* € U, v* €

R, and w* € R" such that

p
> u [V fi(at) = NVgi(x +Z VIV G +ZkaHk( ) =0, (3.5)
=1

k=1

(D wv ) - 2
=1

q T
+ Z U;V2Gj(l‘*) + Z wZVQHk(x*)}z*> >0, (3.6)
j=1

k=1
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ui [fi(z") = Ngi(2™)] — %(Z, Vfi(z") = AVgi(2")) = 0, i€ p, (3.7)
VjG;(%) — (e VG ) 2 0, e, (3.8)
wiHp(z*) — %(z*,wZVHk(x*» >0, ker. (3.9)

In addition, assume that any one of the following six sets of conditions holds:

(a) (i) for eachi € Iy = 1(u"), f; is (¢,m, pi, 0, m)-sonvex and —g; is (¢,n, p;, 0, m)-sonvex

at x*, ¢ is superlinear, and ¢(a) > 0= a > 0;

(it) for each j € Jy = JL(v*), G; is (éj,n,ﬁj,ﬁ,m)—quasisonvex at T*, qgj is increasing,

and ng(o) =0;

(iii) for each k € K, = K,(w*), &€ = Dyp(&,w*) is (¢, 1, Pr, 0, m)-quasisonvez at * and

(v) p*(z, ")+ 2 ey, viPi (2, 2") + X ek, Pe(@, ) 20 for allx € F, where p*(z,2”) =

dier, Wi [pi(w, %) + X pi(x, z)];

(b) (i) for eachi € Iy, fi is (¢,m, pi, 0, m)-sonvex and —g; is (¢, n, pi, 0, m)-sonvezr at =*, ¢

is superlinear, and ¢(a) > 0= a > 0;
(ii) C(-,v*) is (qub,n, p, 0, m)-quasisonvex at r*, é is increasing, and QAS(O) =0;
(iii) for each k € K, & — Di(§,w*) is ((;uﬁk,n,,bk, 0, m)-quasisonvex at =* and J)k(()) =0;

(iv) p*(2,2*) + ple,a*) + ek, Hrlx,a*) > 0 for all z € F;

(¢c) (i) for each i € I, f; is (¢,n, pi, 0, m)-sonvex and —g; is (¢, n, pi, 0, m)-sonvexr at x*, ¢

is superlinear, and ¢(a) > 0= a > 0;

(i1) for each j € Ji, Gj is (gZ;j,n, pj, 0, m)-quasisonver at x*, gZA)j is increasing, and
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(iii) & — D(&,w*) is (giu),n,/‘i, 0, m)-quasisonvex at =* and QZ(O) =0;

(v) p*(z,2*) + 3 iey, vipj(x, ) + plz,2") = 0 for all z € F;

(d) (i) for eachic I, fiis (¢,m, pi, 0, m)-sonvex and —g; is hybrid (¢,n, pi,0, m)-sonvez at
x*, ¢ is superlinear, and ¢(a) > 0= a > 0;
(ii) & — C(§,v*) is (gzg,n, p, 0, m)-quasisonvex at r*, b is increasing, and quS(O) =0;
(iii) & — D(&,w*) is (gzvﬁ,n,ﬁ, 0, m)-quasisonvex at r* and <Z>(()) =0;
() p*(z,2*) + p(z,2*) + p(z,2*) >0 for all z € F;
(e) (i) for eachi€ Iy, fi is (¢,m, pi, 0, m)-sonvex and —g; is (¢, n, pi,0, m)-sonvexr at =*, ¢
is superlinear, and ¢(a) > 0= a > 0;
(ii) & = G(&,v*,w*) is (¢2,77,/3, 0, m)-quasisonver at x*, b is increasing, and é(O) =0;
(iii) p*(z,x*) + p(z,2*) >0 for all x € F;

(f) the Lagrangian-type function

p q r
€= L&, v, w*, X7) = > wf[fi(6) = N gi(©)] + D viGy(€) + > wiHe(€)
i=1 k=1

j=1
is (¢,m, p, 0, m)-pseudosonver at =*, p(x,z*) >0 for allz € F, p(a) > 0= a >0, and
(L(a:*,u*,v*,fw*, %)
1
—§<VL(x*,u*,v*,w*,A*),z*)) > 0.

Then z* is an optimal solution of (P).

Proof 3.1 Let x be an arbitrary feasible solution of (P).
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(a): Using the hypotheses specified in (i), we have for each i € I,

S(@) = Fa") + 3V ALa), )
> (Vi) + 5 VAR e, a) + ol 2*) 6,2 ™
and
8~ 5i@) + 6i(a") — 5(Vai(a), =)
> {Vaila®) + 5 Vila) (e 20)) + il ) 6 7)™

As X* >0, u* >0, > ul =1, and ¢ is superlinear, we deduce from the above inequalities

that
6( D2 uilfile) ~ )] - Y wilh) - Mgl
=1 =1
5 S wVAE) - XVaia) 2))
=1

>

< Z w[V2 fi(z*) — NV2g;(x)] 2%, n(x, a:*)>
i=1

N | =

. <iu;‘[Vfi(a:*) X Vgat) (o))

+ Y uipil,2”) + A i, a)][|6(z, 27) ™. (3.10)

i€l
Since x € F and (3.4) holds, it follows from the properties of the functions quSj that for each

jeJy, (U;Gj(l') <0 <vjGj(a*) — %(z*,U;VGj(a;*», which implies

which in view of (ii) implies that

(VG (") + %VQGJ(:E*)Z*?n(IE?x*» < —pj(@, 2)]|0(, %)™
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As v; > 0 for each j € g and v =0 for each j € q\J+ (complement of J relative to q), the

above inequalities yield

q

q

* * 1 * * * *
ZvjVGj(:U )—|—§Z’U]-V2Gj(l' )2 n(x,x )>
i=1

i=1

= > uipyl,a”) |8, )™ (3.11)

JeJ4

S

IN

In a similar manner, we can show that (iii) leads to the following inequality:

/\

ZkaHk Zwkv Hk ;U($;$*)>

< — Z Pz, )0z, z*)||™. (3.12)
keK.

Now, using (3.5), (5.6), and (3.10) - (3.12), we find that

o( D uilfile) = A Zu [fila") = Ngi(a")
i=1

_%< _,, w [V fi(a") = XVgi(a")], 2)]))

)

q
> — [< v;VG (") + % ZU;V2Gj(m*)z*, n(x,x*)>

j=1
AT Zwkv Hy(a")2" n(w,27))|
k=1
3 i 2%) + N, a8, )™ (by (3.5), (3.6), and (3.9))
iely

Z{Zuf[ﬁi(x,x)—i—/\pz:rx va]xx Zpkxac }HG:I:JU )™

iely jedy kEK,

(by (3.11) and (3.12))
>0 (by (iv)).

But ¢(a) > 0= a >0, and hence using (3.7), we have

Zu [fi(z) = A gi(x)] > 0, (3.13)
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which using (3.7) implies that

Zu [fi(@) = N'gi(a)] = 0. (3.14)

Now using this inequality and Lemma 3.1, we have

* Z 1 zfz(m) Z? 1ulfz(:v) _
pla7) = A P ulgi(x) <r£16a&< >P L uigi(x) =l

~—

Since x € F is arbitrary, we conclude from this inequality that x* is an optimal solution to (P).
(b): Proceeding as in part (a), for each j € Jy, we have (U;Gj(x) < 0 < vjGj(z”) —

3(z%, viVGj(z*)), which implies

n * * * 1 * )k *
¢ (v;Gj(x) — viGi(x*) + 5(2 ,0VG;(2))) <0, (3.15)
which in view of (ii) implies that
q
<Zu VG(x*) + = Z vIV2G (") ,n(fc,m*)> < —p(x, x*)]|0(z, %)™,
j=1

Now proceeding as in the proof of part (a) and using this inequality instead of (3.10), we arrive
at (3.12), which leads to the desired conclusion that =™ is an optimal solution of (P).
(c) - (e) : The proofs are similar to those of parts (a) and (b).
(f) : Since p(x,x*) >0, (3.5) and (3.6) imply
(n(x,z*), VL(z", u*, v, w*, \*) + %VQL(x*, u* vt w, ) 2)

= —p(.%', .I'*)”Q(JZ, x*) Hm7
which in view of our (¢,n, p, 0, m)-pseudosonvexity assumption implies that

1
Qb(L(ZL',U*,’U*,w*, )‘*) - L(ZL'*,U*,U*,U}*,A*) - §<VL(:L‘*7U*7’U*>U)*’ )‘*)7Z*>:|) = 0.
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But ¢(a) > 0= a >0 and hence we have
L(z,u*,v*,w*, \*) > 0.
Because x,x* € F, v* >0, and (3.8), (3.4) and (3.5) hold, we get
p
> uilfi(x) = Ngi(x)] > 0.
i=1

As seen in the proof of part (a), this inequality leads to the desired conclusion that z* is an

optimal solution to (P).

Theorem 3.2 Let x* € F, \* = p(x*), the functions f;, gi,i € p, Gj,j €q, and Hy, k €r, be
twice differentiable at * Then there exist u* € U, v* € RL, and w* € R" such that (3.1) - (3.5)

hold. Assume, furthermore, that any one of the following five sets of hypotheses is satisfied:

(a) (i) &€ — E(&,u*, \*) is (¢, 1, p, 0, m)-pseudosonvex at x*, and (a) > 0= a > 0;

(it) for each j € J = J(v*), Gj is (qgj,n,[)j,H,m)—quasisonvex at ¥, gZ;j is increasing,

and $;(0) = 0;

(iii) for each k € K, = K(w*), € = Dp(&,w*) is (¢, 1, P, 0, m)-quasisonvezr at z*, and

(v) p(x, ") + ey, Vipj(, %) + Xpek, Pr(z,2%) 2 0 for all x € F;
(b) (i) € — E(& u*, \*) is (¢,n, p, 0, m)-pseudosonver at z*, and ¢(a) > 0= a > 0;
(i1) & — C(&,v*) is ((ﬁ,n, p, 0, m)-quasisonvex at x*, ¢ is increasing, and é(O) =0;
(iii) for each k € K, & — Dy(§,w*) is (qzk,n,ﬁk, 0, m)-quasisonvex at x*, and ng(O) =0;

(iv) p(x,z*) + p(x, %) + 3 _pek, Pr(z, %) >0 for all x € F;

(c) (i) &€ — E(&u*, ) is (o,n,p,0, m)-pseudosonver at x*, and ¢p(a) >0 = a > 0;
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(i1) for each j € Ji, Gj is (q@m,n,ﬁj,G,m)—quasisonvex at x*, gZ;j is increasing, and

(i1i) & — D(&,w*) is (é,n,ﬁ, 0, m)-quasisonver at =*, and <5(0) =0;

(iv) plz, ") + > 5e,, vipj(@,a%) + p(z,2%) > 0 for all x € F;

(d) (i) € — E(&u*, \*) is (¢, 1, p, 0, m)-pseudosonvex at x*, and (a) > 0= a > 0;

(ii) & — C(&,v*) is ((5,77, p, 0, m)-quasisonvex at z*, b is increasing, and é(O) =0;

(i1i) & — D(&,w*) is (qz,n,ﬁ, 0, m)-quasisonver at r*, and <Z>(O) =0;

(v) p(x,x*) + p(z,x*) + p(z,z*) > 0 for all z € F;

(e) (i) & — E(&u*, ) is (¢,n, p,0, m)-pseudosonver at z*, and ¢(a) >0 = a > 0;

(ii) & — G(&,v*,w*) is (¢2,77,/3, 0, m)-quasisonver at x*, é is increasing, and qg(()) =0;

(i1i) p(x,z*) + p(x,z*) >0 for all x € F.

Then x* is an optimal solution of (P).

Proof 3.2 Let x be an arbitrary feasible solution of (P).

(a): Based on assumptions specified in (i) and (iii), (3.10) - (3.12) still hold for this case. From
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(3.5), (3.6),(3.10), (3.11), (3.12) and (iv) we deduce that

p
(Y wlVhil") - NVl Zu [V2fi(a") = N'V2gi(ah)]e" n(, 2))
=1

\'M@

> — [< zq:v;vc;j(x*) + % *VQG-(w*)z*m(w,:v*D

j=1 j=1
<ZkaHk Zw V2H(z ,T](:L‘,J,‘*)>
> [va] (x,z* Zpkxx }HGmm)Hm (by (3.6) and (3.7))

j€J+ keK

> —=pla, 2)||0(z, ") [ (by (iv)),

which in view of (i) implies that

1
(€, u, X7) = [E@" ", X7) = (VE@" u" X, 27)]) = 0.
Based on the properties of the function ¢, the last inequality yields
E(x,u*, \*) 2 0.

As shown in the proof of Theorem 3.1, this inequality leads to the conclusion that x* is an
optimal solution to (P).

(b) - (e) : The proofs are similar to that of part (a).

Theorem 3.3 Let z* € F, let \* = p(x*), and assume that the functions f;, g;, i € p, G, j €
q, and Hy, k € r, are twice differentiable at x*, and that there exist u* € U, v* € R%, and
w* € R" such that (3.1) - (3.4) hold. Assume, furthermore, that any one of the following five

sets of hypotheses is satisfied:
(a) (i) € — E(&,u*, \*) is prestrictly (¢,n, p,0, m)-quasisonvez at z*, and ¢(a) > 0= a > 0;

(i1) for each j € J4 = JL(v*), Gj is ((Z)j,n,ﬁj,G,m)—quasisonve:E at x*, qASj is increasing,

and ¢;(0) = 0
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(iii) for each k € K, = K(w*), £ — Dg(&,w*) is (qzk,n,ﬁk,H,m)—quasisonvex at x*, and

(iv) p(x,2%) + 3 ie s, V;0i(@,2%) + Xper, Pe(@, ") >0 for all x € F;

(b) (i) &€ — E(& u*, \*) is prestrictly (¢,m, p, 0, m)-quasisonvex at x*, and ¢(a) >0 = a > 0;
(ii) € — C(€,v*) is (¢,m, p, 0, m)-quasisonvex at =*, ¢ is increasing, and G(0) = 0;
(iii) for each k € K, & — Dy(&,w*) is ((;Vﬁk,n,p“k, 0, m)-quasisonvex at x*, and q;k(O) =0;

(iv) p(x,x*) + p(x, %) + 3 pek, Pr(z,2*) >0 for all x € F;

(c) (i) & — E(& u*, ) is prestrictly (¢,m, p, 0, m)-quasisonvex at x*, and d(a) >0 = a > 0;

(it) for each j € Ji, Gj is (gZ;j,n, pj, 0, m)-quasisonvex at x*, gZA)j is increasing, and

(iii) € = D& w*) is (6,1, .0, m)-quasisonver at a*, and $(0) = 0;

(v) p(x, %) + 3 e, vjpi(z, %) + p(z,2*) > 0 for all x € F;

(d) (i) & — E(& u*, \*) is prestrictly (¢, n*, p, 0, m)-quasisonvex at x*, and p(a) > 0= a > 0;
(ii) & — C(§,w*) is ((5,77, p, 0, m)-quasisonvex at r*, ¢ is increasing, and ¢E(O) =0;
(i1i) & — D(&,w*) is (qz,n,ﬁ, 0, m)-quasisonver at r*, and <Z>(O) =0;
(v) p(x,x*) + p(z,x*) + p(z,z*) > 0 for all z € F;

(e) (i) & — E(& u*, \*) is prestrictly (¢,m, p, 0, m)-quasisonver at x*, and ¢(a) >0 = a > 0;

(i1) & — G(&,v*,w*) is (gﬁ,n,ﬁ, 0, m)-quasisonver at x*, b is increasing, and (ZB(O) =0;

(111) p(x,x*) + p(xz,x*) >0 for all z € F.
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Then x* is an optimal solution of (P).

Proof 3.3 The proof is similar to that of Theorem 3.2.

4 Concluding Remarks

We established several results applying the new notion of higher order invexity to the context
of discrete minmax fractional programming, which offer further applications to other fields for

research endeavors relating to discrete fractional programming problems.
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Imbedding Theorems and Domains

Alois Kufner * and Jana Stard, Prague '

Abstract

The aim of this survey is to describe various types of domains which appear in the
theory of function spaces and to show they role in some imbedding theorems.

Keywords: Sobolev Spaces, Sobolev imbedding theorem.

1 The Sobolev space and an imbedding

For © a bounded domain in the N-dimensional Euclidean space RY and for a parameter p > 1,
let us define the Sobolev space W1P(£2) (roughly speaking) as the set of functions f = f(x)
defined a.e. in € which, together with their first order derivatives % (1 =1,2,...,N), belong
to the Lebesgue space LP(2). The famous Sobolev imbedding theorem claims that, for 1 < p < N,

a function f € WHP(Q) belongs to the space

N
L)) with 1<p<q§NiDP.

We denote this result as

WhP(Q) — LY(Q) (1.1)
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and call gg = NN—_’; the critical value of the imbedding (1.1). For the validity of an imbedding of

type (1.1), the domain Q plays an important role, as follows from the following (counter)example:

Example 1. Consider the plane domain Q (N = 2)
Q= {(z1,22): 0 < 21 <1, |ma] < 2Pexp(—p/a1)}, 1 <p<2.

The function f(x) = exp(1/x1) is an element of W1P(Q2), but f ¢ L(Q) for any ¢ > p since

1
/ |f(z)|%dz = 2/ exp(q/xl)exp(—p/afl)x%pd:vl = 0.
Q 0

2 Domains

A domain § is an open and connected set in the space RY. Now, let us describe various types
of domains, from various points of view. — The boundary of the domain € will be denoted by

0f). Sometimes the properties of 0§2 are more important than that of 2.

A. Boundedness

A.1 The domain Q C RY is bounded, if there exists a ball B(0, R) with center at origin and

with radius R > 0 such that Q C B(0, R).

A.2 In the opposite case, the domain € is unbounded. We can differ the following cases:

A21 () = oo [p denotes the Lebesgue measure;
A22  p() < oo;

A.2.3 Qs quasibounded, i.e.

lim dist(xz,0Q) =0

|z|—o00

(dist(z, M) denotes the distance between the point x and the set M).



Journal of Orissa Mathematical Society 53

B. A plausible criterion

Usually, we consider domains €2 in RY whose boundaries consist only of (N — 1)-dimensional

surfaces. Furthermore, we claim that

B.1 to every point x € 9 there exists a neighbourhood U, in which it is possible to describe
— in terms of an appropriate system of coordinates y = (v, yn) = (y1,%2, - -, UN—1, YN) —

the boundary 9 [more precisely: the set Q2N U,| by a function a of (N — 1) variables as

yn = a(y');

B.2 the domain 2 “lies on only one side of the boundary 99Q”.

Example 2. Let Q C R? be the plane domain obtained by deleting from the unit ball the
segment S = {(z1,22) : 0 < 21 < 1, 2 = 0}. The boundary 09 consists of the unit circle
and of the segment S. - For this domain, both conditions B.1 and B.2 are violated: In the
neighbourhood of the point (1,0) € 012, the domain cannot be described by a function, and

the domain 2 lies “on both sides of §”. Domains of type B are called domains with continuous

boundary (if the function a from B.1 is continuous) or with Hélderian boundary (shortly Holder
domains) (if a satisfies the Holder condition), or with Lipschitzian boundary (shortly Lipschitz

domains) (if a satisfies the Lipschitz condition).

C. Convexity

A domain € is called convez, if it contains with any two points x,y € € the whole segment (z, y)

with end-points z,y.
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D. Starshapedness

A domain €2 is called starshaped (with respect to xo € ) if there exists a point xy € €2 such that,
with every point z € €, the whole segment (xg,z) belongs to 2. [Alternatively: A bounded
domain containing the origin 0 is called starshaped with respect to the origin, if there exists a
positive function h defined on the unit sphere such that Q = {z € RY; |z| < h(z/|z|) for = # 0}.

In this case 9Q = {z € RY; |2| = h(z/(|z]).]

Remark 1. (i) When S. L. SOBOLEV started in 1938 to introduce and investigate the function
spaces bearing now his name, he used starshaped domains. (ii) Convex domains are starshaped

with respect to any of their points.

E. John domain

Roughly speaking, the bounded domain Q C R is a John domain, if it is possible to move from
one point of {2 to another without passing too close to the boundary 0f, or, more precisely, if
there is a constant C; and a distinguished point g € €2 so that each point x € €2 can be joined to
xo by a curve v : [0, 1] — Q such that v(0) = z, (1) = zo and dist(y(¢),0Q) > (1/Cy)|z — v(¢)|
for every t € [0, 1].

The class of John domains was considered first by F. JOHN in 1961 and named in 1978 by

O. Martio and J. Sarvas.

H. Domains with property (S)

These domains have been introduced in [KJF] and used for the investigation of spaces of smooth
functions. A domain  has the property (S), if there exists a constant M > 0 such that for

every two points z,y € §2 there exists a finite set of points zg = x, x1,x2, ..., Tm = y such that
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m—1
the segments (v, zi+1) (i =0,1,...,m —1) liein Q and > |z; — zit1]| < M|z —y|.
i=1

Remark 2. Convex and starshaped domains have the property (S). The plane domain Q2 lying
— roughly speaking — “between two infinite disjoint spirals which converge to the same point”
(called “pole”) does not satisfy the condition (S). [The two spirals forming the boundary 92 can
be described in polar coordinates by r¢ = a and rp = b, 0 < @ < b, with the origin being the

pole.]

I. Domains with the cone condition

A bounded domain © C R is called a domain with the (interior) cone condition if there exists

a finite cone
C={zecRV :g? 422+ .. 2% <azk, 0<azy <D},

a,b > 0, such that any point of {2 is a vertex of a cone that is congruent to C' and is entirely

contained in ).

Example 3. (i) Every domain with the cone condition is a John domain. Also the plane
domain from Example 2 satisfies the cone condition.

(ii) Domains with the cone property are “user-friendly” and appear frequently in applications.

J. Domains with the segment condition

We say that a domain Q@ C RY satisfies the segment condition if every point z € 9 has a
neighbourhood U, and a nonzero vector y, such that if z € QN U,, then z + ty, € Q for

0<t<l.
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K. Domains with cusps

Such domains are investigated in detail in [AF]. We say — roughly speaking — that {2 has a cusp

at point xzg € 91 if no open cone of positive volume contained in €) has its vertex at xg.

K.1 For 1 <k < N —1and A > 1, the standard cusp Qi » is defined as the set of points

r = (z1,22,...,2y5) € RV that satisfy the inequalities

2 2 22
]+t <xphy, T >0, ,n >0,

1/A

(a3 + - +ap) P+ ap g+ oy < d?

where a is the radius of the ball of unit volume in R¥.

The cusp Q) has an axial plane spanned by the axes xy, Tx11, ..., 2N, and a cusp plane spanned

by Zp42,...,xn. If k=N — 1, then the origin is the only vertex point of Qy x.

Example 4. In the case N =2 and k =1 (i.e., k = N — 1), the cusp in the neighbourhood of

the vertex (= the origin) can be illustrated as {(z1,z2), 21 € (0,¢),x3 = |z1|/*}.

K.2 Due to Example 4, we can also say that Q » is a cusp with power sharpness (the sharpness
being characterized by the parameter A [more precisely: by 1/)\]). We say that € has at
xo € O a cusp of exponential sharpness if — for Q, = B(xzg,r), Sy = B(xg,7) N and

A(r, Q) the surface area of S, — it is

A(r,Q
lim # = 0 for every real k.
r—0+ r

L. Domains with the flexible cone property

In the Russian literature (see e.g. [Be]), domains with the flexible A-horn or flexible A-cone

property appear. For A = (A1, A2, ..., \,) with \; > 1, a domain Q C RY will be said to have
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the flexible A\-horn property [A-cone property, if Aj = Ay = --- = Ay = A], if for some § € (0, 1],
T > 0 and for any = € Q, there exists a curve p(t!) = p(t*,z) = (p1(tM),..., pn(t*N)),

0 <t <T, such that

pi(t) are absolutely continuous on [0, 7], |pi(t)] <1 for a.e. t € [0,T7]

p(0,2) =z, z+ ] [p(t 2) +3MN-1, )] c Q.
o<t<T

Remark 3. Domains with the flexible cone property are more general than the John domains.

M. Domains of type 0N

These domains have been introduced and described by J. NECAS in 1962 and have been used
in his book [N] and, e.g., in the book [KJF], but they appear, even in a particular or modified
form, on several places in the literature (see, e.g., [AF] or [Bu]). Let us give at least a (raw)

description: We assume that (a) the domain € is bounded;

(b) there exists a finite covering of the boundary 9 by open sets U;, i = 1,2,...,m, and an
open set Uy C 2 such that 61 U; D 09, 60 U; O Q;

(c) there exist m systems of coordinates y; = (¥}, vin), ¥ = (i1, Yi2s---,YiN—-1), and m
functions a; = a;(y}) defined on some appropriate sets A; C RN such that a; describes the set
IUNU; = yin = ai(y)), [ai(yl),yin] € 02 (i =1,2,...,m);

(d) there exists € > 0 such that, for ¢ € (0,¢), the points [y}, a;(y;) — t] (v, € A;) lie in © and

the points [y}, a;(y!) +¢] liein RV \ Q (i =1,2,...,m).

We shall say that  is of type 91° or % or MO (0 < A < 1) if all functions a; are continuous
[a; € C°(A;)] or satisfy the Holder condition [a; € C%*(A;)] or satisfy the Lipschitz condition

[a; € C%L(A,)], respectively.
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Remark 4. (i) The description above allows to reduce the investigation of a function of N
variables [in U;, i.e. in the “cylinder” A; x (0,00)] to the investigation of a function of a single
variable y;y with the parameter y, € A;.

(ii) It is easy to show that © € M is a domain with “continuous boundary” (see Section B),
Q € MO a domain with the cone condition (see Section I) and 2 € M%* a domain with cusps

(Section K) with cusps of power sharpness.

N. Some special domains

In the literature, one can find many examples of domains constructed in terms of some limiting

procedure. Here, let us consider two special cases. N.1 von Koch’s snowflake. Let us

consider a segment of length [; divide it into three equal parts and replace the middle part by
an equilateral triangle. We obtain a broken line of four segments of length //3, with total length
41/3. We proceed similarly with every of this four segments and obtain a broken line consisting
of 16 segments of length 1/9 each and of total length 161/9 = (3)?l. We continue similarly with
every of these 16 segments and obtain a broken line of total length (%)3l etc. Finally, tending to
00, we obtain a line of infinite length. — If we use this procedure for every side of a equilateral
triangle, we obtain a domain with boundary of infinite length, which was described in 1904 by
the Swedish mathematician Helge von Koch. — This “snowflake” is a typical example of a so-

called fractal domain, i.e. a domain with fractal boundary. N.2 The “spiny urchin” is a domain

Q) in R?, obtained by deleting from the plane the union of the sets Sy, (k = 1,2,...) specified in

polar coordinates by

Skz{(nw):rzk:, @:%, n:1,2,...,2k+1}.

2k+1

Hence, the set Sj is a collection of rays; the domain {2 is unbounded, but quasibounded

(see A.2.3); the union of the sets Sj forms its boundary 9€2; and 2 = R2.
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Remark 5. There are also many other classes of domains in RY, e.g. MAZ'JA’s JN—1)/N
and I}, 1 jp—1/n-domains from the 1980-ies (see [M]); the (e, d)-domains of JONES (see [Jo]); the
d-sets (see [JW]), domains of the type “rooms and passages” (see [EE]), but we will not go into

details here and refer to the literature.

3 Back to the imbedding theorem
In Part 1, we have mentioned the classical result of SOBOLEV: If 1 < p < N, then

WiP(Q) — LYQ) for 1<p<q<qo (3.2)

with gg = NN—f;D. Moreover, the value qg cannot be improved. 3.1 This result, derived for bounded

and starshaped domains, holds for many of the domains mentioned above, in particular

for domains with the cone condition (Section I)
- for John domains (Section E)

for domains of type M%! (Section M)

for the von Koch’s snowflake (being a John domain)

for unbounded, but quasibounded domains (Section A) with “reasonable boundaries” (like

the “spiny urchin”, Section N.2).

3.2 The imbedding W'?(Q2) < LP(Q) holds due to the definition of the Sobolev space WP (),
but in some cases, the imbedding WP (Q2) < L4(2) does not hold for any q > p. Example 1

can serve as an illustration; in general, it is the case if

(i) € is unbounded, but p(€2) < oo ([AF, Theorem 4.46]) or
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(ii) © has a cusp of exponential sharpness with vertex at zo € 9 ([AF, Theorem 4.48],

Example 1).

3.3 In some cases, the imbedding W1?(Q) — L4(2) holds for ¢ > p, but ¢ < g0 = Np/(N — p).
More precisely: (i) Let £ have a cusp with power sharpness 1/A (Section K.2) and let v > A —1.

Then the imbedding WP (Q) < L4() holds for

(v+ N)p
TN T

I<p<g< :
P q_l/—l—N—p

(ii) Let © have the flexible A-cone property (Section L, A > 1). Then the imbedding WP (Q) <

L%(Q2) holds for

l<p<q< Np -
PSI=XN-1D+1-p  ®

Obviously, it is ¢1 < qo and g2 < qp; hence these imbeddings are worse than that in the classical

case. [The estimates for upper bounds ¢; and ¢z can be found in [AF] for (i) and in [Be] for (ii).]
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1 Introduction

The theory developed in the study of convex functions, arising from intuitive geometrical ob-
servations, may be readily applied to topics in real analysis and economics. In the modern era
the theory of convex functions has experienced a rapid development. This can be attributed
to several causes: firstly, so many areas in modern analysis directly or indirectly involve the
application of convex functions; secondly, convex functions are closely related to the theory
of inequalities and many important inequalities are consequences of the applications of convex
functions (see [16]).

A characterization of convex function established by T. Popoviciu [17] is studied by many people
(see [18, 16] and references with in). For recent work, we refer [8, 11, 12, 13, 14]. The following

form of Popoviciu’s inequality is by Vasi¢ and Stankovié¢ in [18] (see also page 173 [16]):

Theorem 1.1 Let mk e Ny m >3,2<k<m-1, [o,8] CR, x = (21,...,Tm) € [a, 5],
P = (p1,...,pm) be a positive m-tuple such that y ;*  p; = 1. Also let f : [o, 5] = R be a convex

function. Then

m—k k—1
Prom (X, 3 ) < D1 (%, 95 f) P (X, 5 ), (1.1)
where
k
1 k > Pi; Ti;
=1
Prom (%P3 f) = P (6,03 f(@)) 1= oy ) pi, | f | =
k=1 1<ii<.<ip<m \j=1 Z pi
j=1
1s the linear functional with respect to f.
By inequality (1.1), we write
m—k k—1
P(x,pif) = 2 p1m(%, 0 f) + P (X, 25 f) = Do (%, 23 f). (1.2)
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Remark 1.1 It is important to note that under the assumptions of Theorem 1.1, if the function

f is convex then P(x,p; f) > 0 and P(x,p; f) =0 for f(x) =x or f is constant function.

The mean value theorems and exponential convexity of the linear functional P(x, p; f) are given
in [11] for a positive m-tuple p. Some special classes of convex functions are considered to
construct the exponential convexity of P(x, p; f) in [11]. In [12] (see also [8]), the results related
to P(x, p; f) are generalized with help of Green function and n—exponential convexity is proved
instead of exponential convexity.

In the present paper, we use Abel-Gontscharoff interpolating polynomial and prove many
interesting results. The Abel-Gontscharoff interpolation problem in the real case was introduced
in 1935 by Whittaker [19] and subsequently by Gontscharoff [7] and Davis [6]. The Abel-

Gontscharoff interpolating polynomial for two points with integral remainder is given in [1]:

Theorem 1.2 Letn,l €N, n>2 0<I<n-—1and X\ € C"([o, 5]). Then we have
A(s) = Th—1(a, B, s;A) + R(s; M), (1.3)

where Ty—1(c, B, 8; \) is the Abel-Gontscharoff interpolating polynomial of degree n — 1 for two
points, i.e.
l+1+v( 6)1(171)

l n—I[—2 w
(S_a)v v — w
Aales By = 3 A @)+ 3 [Z Grirow—o )N O

v=0 w=0

and the remainder is given by

R(s;\) = / 7 (s A (B,

where as Gr(s,t) be Green’s function [1, p. 177]

l
Z <n_1)(s—a)”(a—t)”_”_1, a<t<s,
v
G(s,1) = ——— { =0

(n—1)! _”Zl <n—1>8_a) (a—t)" 1 s<t<B.

v=Il+1

(1.4)
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Further, for a < s, t < (8 the following inequalities hold

(-1 2Gnls, D) Cg;(f’t) >0, 0<v<l, (1.5)

(_1)nlacg;(v5’w >0, [+1<v<n—-1. (1.6)

The presentation of the paper follows the following pattern: we start our main results from
Section 2, in which we present generalization of the Popoviciu’s inequality by using Abel-
Gontscharoff interpolating polynomial combine together with the n—convexity of the function
A. Further in Section 3, we present some interesting results by using Cebysev functional and
Griiss-type inequalities along with some results relating to the Ostrowski-type inequality. In
Section 4, we study the functional defined as the difference between the R.H.S. and the L.H.S.
of the generalized inequality and our aim is to investigate the properties of functional, such as
n—exponential and logarithmic convexity. Furthermore, we prove monotonicity property of the
generalized Cauchy means obtained via this functional. Finally, in Section 5 we give several

examples of the families of functions for which the obtained results can be applied.

2 Generalization of Popoviciu’s Inequality for n—convex

Functions Via Abel-Gontscharoff Interpolating Polynomial

Motivated by identity (1.2), we construct the following identity with help of Abel-Gontscharoff

interpolating polynomial.

Theorem 2.1 Letn,l e N, n>2 0<I<n—1and ) € C"(|a,[]) and let m,k € N, m > 3,

2<k<m-1, [a,] CR, x = (21,...,Tp,) € [, 5], P = (P1,--,Pm) be a real m-tuple such
k
& X ;i
that > 25 1 pi; # 0 for any 1 <iy < ... <ip <m and S pi = 1. Also let =—— € [, ] for
> pij
Jj=1
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any 1 <iy < ... < ik < m with G, defined in (1.4). Then we have the following identity:

L0 (q
P(x,p; \(x)) = Z A )P(XJ); (z—a)")

-2 w
(_1 w—uv B _ a)wfv)\(l+1+w)(ﬁ) ;
D e T s L
+/BP(x,p;Gn(m,t)))\(”)(t)dt. (2.7)

Proof 2.1 Using Theorem 1.2, we have

l
Z .:U — Oé a)
v=0 !
l+1+v( ﬁ)w—v

3 [ e

+ / ’ G (z, OAM (B)dt.  (2.8)

Substituting this value of X in (1.2) and following Remark 1.1, we get (2.7).

In the following theorem we obtain generalizations of Popoviciu’s inequality for n—convex func-

tions.
Theorem 2.2 Let all the assumptions of Theorem 2.1 be satisfied and let for n > 2
P(x,p; Gu(z,1)) 2 0, t € o, f]. (2.9)

If X\ is n—convez, then we have

! (v)

P(x,p; A ZZ

v=2

(x,p; (z — )")

n—l—2 - w

w v — a)wv (I+14w)
! Z [Z (lw(Lﬁl+v))!(w)\v)! D e i (@~ a)*+0). 210

Proof 2.2 Since the function A is n—convez, therefore without loss of generality we can assume
that X is n-times differentiable and A\ (x) > 0 for all x € [, B] ( see [16], p. 16 ). Hence we

can apply Theorem (2.1) to obtain (2.10).
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Now, we give generalization of Popoviciu’s inequality for m-tuples.

Theorem 2.3 Let all the assumptions of Theorem (2.1) be satisfied in addition with the condi-
tion that p = (p1, ..., pm) be a positive m-tuple such that 3" | p; = 1 and consider X : [, 5] — R

is n—convez function.

(i) If (n = even, | = odd) or (I = even, n = odd), then (2.10) holds.

(ii) Let the inequality (2.10) be satisfied. If the function

! n—l— w v w—v v

Z (x — ) AW (q Z zw: (B —a)V Y (z — )1t AUH1+) (g)
s —~ I+ 1+v)(w—2)! )
(2.11)

is convex, the R.H.S. of (2.10) is non negative and we have inequality
P(x,p; A(z)) > 0. (2.12)
Proof 2.3 (i) By using (1.5), for a <z, t < the following inequality holds
0?Gr(z,t)

—pnit e Y > 2.1

(- T (213)

therefore it is easy to conclude that if (n = even, | = odd) or (I = even, n = odd) then

82%’;(236’0 > 0 and if (n = odd, | = odd) or (I = even, n = even) then aQ%ng’t) <0. So for
the cases (n = even, | = odd) or (I = even, n = odd), Gy, is conver with respect to the first
variable therefore by following Remark 1.1, the inequality (2.9) holds for m-tuples. Hence by
Theorem 2.2, the inequality (2.10) holds.

(73) Since P(-) is a linear functional, so we can rewrite the R.H.S. of (2.10) in the form
P(x,p; F(x)) where F is defined in (2.11). Since F is (assumed to be) convex, therefore by

Remark 1.1 the non negativity of the R.H.S. of (2.10) is immediate and we have (2.12).
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3 Bounds for Identities Related to Generalization of

Popoviciu’s Inequality

In this section we present some interesting results by using Cebysev functional and Griiss type
inequalities. For two Lebesgue integrable functions f,h : [a, 5] — R, we consider the Cebysev

functional

A(f,h) = 5— /f dt—ﬁi/Bf(t)dt.ﬁia/jh(t)dt.

The following Griiss type inequalities are given in [5].

Theorem 3.1 Let f : [a, 5] — R be a Lebesgue integrable function and h : [a, B] — R be an

absolutely continuous function with (. — a)(B — .)[I']* € Lla, B]. Then we have the inequality

3 L ’ — - 'ach%
AUl AN ([ aE-am@Pe) . G

The constant % in (3.14) is the best possible.

Theorem 3.2 Assume that h : [a, 5] — R is monotonic nondecreasing on [o, 8] and f : [a, ] —

R be an absolutely continuous with f' € L[, B]. Then we have the inequality

’ B (2))2dh 3.15
|A(f, h) )Ilfl\oo/ (z — a)(8 — z) [P (z)]"dh(z). (3.15)

< 55

The constant  in (3.15) is the best possible.

In the sequel, we consider above theorems to derive generalizations of the results proved in the

previous section. In order to avoid many notions let us denote
3(t) = P(x,p; Gu(,1)), t € [a,B], (3.16)

Consider the Cebysev functional A(F,§) given as:

AG3) = Bfa/j F2(t)dt - <5 — /j s<t)dt>2, (3.17)
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Theorem 3.3 Let n,l € N, n > 2, 0 <1l <n-—1and X € C"([a,5]) with (. — a)(B —
NNV € Lio, B]. Letm,k e N, m>3,2<k<m—1, [0, 5] CR, x = (21, ..., 2) € [, B]™,

p = (p1,.,Pm) be a real m-tuple such that Z?leij #£ 0 for any 1 <i1 <...<ip <m and

me

Soipi = 1. Also let =7 e [, B8] for any 1 < iy < ... <ix < m with § defined in (3.16).

Then

-2 w
(=1)“(8 — a)w oAU () , v
[Z (+1+v)(w—wv) }P(X’p’ (@=a)™i)
)\(nfl)(g) A(n— 1)
+ / S()dt + Rale ;). (3.18)

where the remainder Ry, (a, B; \) satisfies the bound

Vi o [ e~ ONCIOPE . (@19

V2

N

|Rn(a, B3 N)] <

[AF,3)]

Proof 3.1 (i) If we apply Theorem 3.1 for f — § and h — X\, we get

[foomsts f on

1
08— «

‘B—a/ BN @~ 57

Q

B 2
/ (t—a)(B — ATVt . (3.20)

N[

IN

(AT, 3)]

7

By denoting

B D) —
Rnla, B3 A) = 5— /3 t)dt — ﬁ—a/a S(t)dt. G—a) . (3.21)

n (3.20), we have (3.19). Hence, we have

B (n—1) (n—
[ soewa =222 sy a0,
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where the remainder K, (o, B;\) satisfies the estimation (3.19). Now from identity (2.7) , we

obtain (3.18).

The following Griiss type inequalities can be obtained by using Theorem 3.2

Theorem 3.4 Letn,l €N, n>2, 0<1<n—1and X € C*([a, B]) such that \"t*1) >0 on
[, B] with § defined in (3.16) respectively. Then the representation (3.18) and the remainder

Rn(a, By ) satisfies the estimation

AP=D(8) + ArD(a) A2 (g) — A(-2) <0‘>]‘ (3.22)

(e BN < 17 | : R

Proof 3.2 Applying Theorem 3.2 for f — & and h — A", we get

‘Bia/jg(t)/\(”)(t t—/ St dt/ﬁ)\(n)(t)dt‘

B
13 oo / (t—a)(B — OAT D ()dt. (3.23)

= 2(ﬁ—a)

Since
B B
/ (t — a)(8 — ATV (1)t = / 2t — (o + BYA™ ()t
= (B—a)A"TV(B) + AV (@)] =2\ () = A" (a)).

Therefore, using identity (2.7) and the inequality (3.23), we deduce (3.22).

Now we intend to give the Ostrowski type inequalities related to generalizations of Popoviciu’s

inequality.

Theorem 3.5 Suppose all the assumptions of Theorem 2.1 be satisfied. Moreover, assume

(p,q) is a pair of conjugate exponents, that is p,q € [1,00] such that 1/p + 1/q = 1. Let
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AP [, B] = R be a R-integrable function for some n > 2. Then, we have

®)(a v
P(x,p; Ax)) — X!, 29 P(x, p; (z — a)?)

_ Z”_I_Q |:Zw (1)w_v(5a)w_v)\(l+l+w)(ﬁ):| P(X, P; (.T _ a)l+1+v)

w=0 v=0 (I4+14v) (w—v)!

B8
< HWHP(/

The constant on the R.H.S. of (3.24) is sharp for 1 < p < oo and the best possible for p = 1.

q 1/q
dt) . (3.24)

P(x,p; Gn(z,t))

Proof 3.3 Using identity (2.7), we obtain

®)(a v
P(x, p; A(@)) — Yy 2 P(x, ps (z — a)?)

n—Il— w 1)WY v(B—a u)—v}\(l+l+w) v
- Zw:lo 2 |:Zv:0 . (l(fl-i-z)J)!(w—v)! (B):| P(X’ b; (.’L‘ B a)l+1+ )

8
/ F()At (t)dt' : (3.25)

Apply Hélder’s inequality for integrals on the right hand side of (3.25), we have

/f F(H)A™ (t)dt‘ = (/j ‘A(") (t) ‘p dt) % </j SO dt) % ’

which combine together with (3.25) gives (3.24).

1/q
For the proof of the sharpness of the constant (ff |S(t)‘th> , let us define the function A
for which the equality in (3.24) is obtained.
For 1 < p < oo take X\ to be such that

1

A (8) = sgn ()| F (1) 71

For p = oo take X" (t) = sgn(t).

For p =1, we prove that

‘/j 3(t))\(")(t)dt} < max |S(t)\</f )\(”)(t)dt) (3.26)

te(e,f]
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is the best possible inequality. Suppose that |§(t)| attains its mazimum at to € [a, 5]. To start

with first we assume that §(to) > 0. For § small enough we define \s(t) by

0, a§t§t07

As(t) = § se(t—to)", to<t<ty+9,

Lt —to)", to+d<t<p.

Then for § small enough

/a ﬁ@(t))\(”)(t)dt' _ ‘ /t tmg(t);dt’ _ % / T

0 to

Now from inequality (3.26), we have

1 [to+d to+d |
5 s <5t / St = §(to).
0 0
Since
. 1 to+0
tim [ (0 =500,

the statement follows. The case when F(tg) < 0, we define A\s(t) by

(

Lt—to—86"", a<t<t,
As(t) = alt—to—08)", to<t<to+94,

0, to+0<t<p,

\

and rest of the proof is the same as above.

4 Mean Value Theorems and n—exponential convexity

We recall some definitions and basic results from [2], [9] and [15] which are required in sequel.
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Definition 4.1 A function X : I — R is n—exponentially convex in the Jensen sense on I if
n
T; +
PRI <l2j> >0,
ij=1
hold for all choices &1,...,&, € R and all choices x1,...,xp, € 1. A function A : I — R is

n—exponentially convex if it is n—exponentially conver in the Jensen sense and continuous on

I.

Definition 4.2 A function A : I — R is exponentially convex in the Jensen sense on I if it is
n—exponentially convex in the Jensen sense for alln € N.
A function X : I — R is exponentially convez if it is exponentially convex in the Jensen sense

and continuous.

Proposition 4.1 If A : I — R is an n—exponentially convex in the Jensen sense, then the

X . m
matrizc [)\ (WT%) } 15 a positive semi-definite matriz for all m € N,m < n. Particularly,
Z?]:

det [)\ (er”:J)] >0
2 1,j=1

forallmeN m=1,2,....n.

Remark 4.1 It is known that A : I — R is a log-convex in the Jensen sense if and only if

A \(z) + 2a6) (a:2+y> + B%\(y) > 0,

holds for every o, € R and z,y € I. It follows that a positive function is log-convex in the
Jensen sense if and only if it is 2—exponentially convex in the Jensen sense.

A positive function is log-convex if and only if it is 2—exponentially convex.

Remark 4.2 By the virtue of Theorem 2.2, we define the positive linear functional with respect
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to n—convex function X\ as follows

l v
AQ) = P(x,pi A ZA_ Px,pi (o — )

v=2

n—Il—-2 r w

Z[

Lagrange and Cauchy type mean value theorems related to defined functional is given in the

1 _ a)’LU7U)\(l+1+w) (B)
(1 —l— 1 +v)l(w —v)!

P(x,p; (z — )T > 0. (4.27)

@M

following theorems.

Theorem 4.1 Let A : [o, 5] — R be such that A\ € C"[a, §]. If the inequality in (2.9) holds,

then there exist £ € |, 8] such that

AQ) = A (A (), (4.28)
where p(x) = % and A(-) is defined by (4.27).
Proof 4.1 Similar to the proof of Theorem 4.1 in [10] (see also [3]).

Theorem 4.2 Let \,v¢ : [o, 8] — R be such that \,v» € C"[«,3]. If the inequality in (2.9)
holds, then there exist £ € [, 5] such that

AQ) A
A(y) — p(E)

provided that the denominators are non-zero and A(-) is defined by (4.27).

(4.29)

Proof 4.2 Similar to the proof of Corollary 4.2 in [10] (see also [3]).

Theorem 4.2 enables us to define Cauchy means, because if

-(3m) ().

which means that £ is mean of «, 8 for given functions A\ and ).

Next we construct the non trivial examples of n—exponentially and exponentially convex func-
tions from positive linear functional A(-). We use the idea given in [15]. In the sequel I and J

are intervals in R.
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Theorem 4.3 LetI' = {)\; : t € J}, where J is an interval in R, be a family of functions defined
on an interval I in R such that the function t — [z, ...,Zn; A is n—exponentially conver in
the Jensen sense on J for every (n + 1) mutually different points xg,...,x, € I. Then for the

linear functional A(\;) as defined by (4.27), the following statements are valid:

(i) The functiont — A(\:) is n—exponentially convex in the Jensen sense on J and the matriz

[A(A¢j+¢, )];”1:1 is a positive semi-definite for allm € Nym < n, tq,..,t,, € J. Particularly,
2

det[A(Ae;+4)]7i=1 > 0 for allm e N, m=1,2,....,n.
Tz 7

(i1) If the function t — A(N\) is continuous on J, then it is n—exponentially convexr on J.
Proof 4.3 The proof is similar to Theorem 4.6 in [4].

The following corollary is an immediate consequence of the above theorem

Corollary 4.1 Let I' = {\; : t € J}, where J is an interval in R, be a family of functions
defined on an interval I in R, such that the function t — [xo, ..., Tn; \] is exponentially convex
in the Jensen sense on J for every (n + 1) mutually different points xg,...,x, € I. Then for

the linear functional A(\;) as defined by (4.27), the following statements hold:

(i) The function t — A(N\) is exponentially convex in the Jensen sense on J and the ma-

m

triz [A (Atj+tl):| s a positive semi-definite for all m € Nym < n, t1,..,t, € J.
2 Jil=1

Particularly,

det {A <)\tj+tl )] >0 forallmeN, m=1,2,..,n.
2 Jl=1

(ii) If the function t — A(X\) is continuous on J, then it is exponentially convex on J.

Corollary 4.2 Let I' = {\; : t € J}, where J is an interval in R, be a family of functions

defined on an interval I in R, such that the function t — [xg,...,xn; \] 18 2—exponentially
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convex in the Jensen sense on J for every (n+ 1) mutually different points xg,...,z, € I. Let

A(:) be linear functional defined by (4.27). Then the following statements hold:

(i) If the function t — A(N\) is continuous on J, then it is 2—exponentially convex func-
tion on J. If t — A(N\) is additionally strictly positive, then it is also log-convex on J.

Furthermore, the following inequality holds true:

A" < AW AT,

for every choice r,s,t € J, such that r < s < t.

(i1) If the function t — A(N) is strictly positive and differentiable on J, then for every

p,q,u,v € J, such that p < wu and ¢ < v, we have

/'LP:Q(A7 F) S ”U,U(Av F)v (430)
where
1
AN p—a
(AE,\Z))I) ’ P#4q,
dp P _

exp < e) > y P=4,

for Ap, Ay €T

Proof 4.4 The proof is similar to Corollary 4.8 in [4].

5 Applications to Cauchy means

In this section, we present some families of functions which fulfil the conditions of Theorem 4.3,
Corollary 4.1 and Corollary 4.2. This enables us to construct a large families of functions which
are exponentially convex. Explicit form of this functions is obtained after we calculate explicit

action of functionals on a given family.
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Example 5.1 Let us consider a family of functions

M={M:R>R:teR}

defined by
et:c
&, t#0
tn Y
Ai(r) =
o, t=0.
Since 43¢ (z) = e!® > 0, the function ), is n—convex on R for every ¢t € R and ¢ — £2t(z) is

exponentially convex by definition. Using analogous arguing as in the proof of Theorem 4.3 we
also have that t — [x0,...,Zn; A is exponentially convex (and so exponentially convex in the
Jensen sense). Now, using Corollary 4.1 we conclude that ¢t — A(\;) is exponentially convex in
the Jensen sense. It is easy to verify that this mapping is continuous (although the mapping
t — A\ is not continuous for ¢t = 0), so it is exponentially convex. For this family of functions,

peq(A,T1) , from (4.31), becomes

1
AN\ T4
(A()\q)) ; t#q,
peqg(AT1) = QO exp (A/(\ig;j‘)t) — %) , t=q#0,

1 A(id-Ao) — =
exp (ni+1 Al(Aof ) , t=q=0,

where “id” is the identity function. By Corollary 4.2 p4(A,I'1) is a monotone function in
parameters ¢ and q.

Since

-

Cgll"ft t—q

dx™

using Theorem 4.2 it follows that:
My q(A,T1) = log e g(A, ),

satisfies

(6% S Mt,q(A7F1) S 6

Hence M, 4(A,T'1) is a monotonic mean.
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Example 5.2 Let us consider a family of functions

I'y={g::(0,00) > R:t € R}

defined by
TS t¢{0,1,...,n—1}
t(t—1)---(t—n+1)’ y Ly ) y
xTr) =
gt( ) 27 log x P 0.1 1
(_1)n—1—jj!(n_1_j)!7 =] € { sy Lyeoo, M — }
Since ‘g;?f

(x) = 2™ > 0, the function g; is n—convex for x > 0 and t — ‘g;%t () is exponen-

tially convex by definition. Arguing as in Example 5.1 we get that the mappings t — A(g¢) is

exponentially convex. Hence, for this family of functions p, (A, I'2) , from (4.31), are equal to

( 1
A(ge) | t-a
(A(gq)> ) t# Q7
n—1
exXp (—1)n1(n_1>‘A(gogt)+zl>> tZQ¢{O717"'7n_1}7
Htg(A, 1_,2) _ A(gt) = k—t
n— Algogr) ~ —
exp | (=1)"(n—1)! e +k§0ﬁ , t=qec{0,1,....,n—1}.

kAt
Again, using Theorem 4.2 we conclude that

s ()

Hence pu14(A,T'2) is a mean and its monotonicity is followed by (4.30).

Example 5.3 Let

s ={¢:(0,00) > R:t € (0,00)}
be a family of functions defined by
,t;x oy 13 7& 17
Ct(l') — ( nl gt)
W, t — ].

: d"¢
Since

() =t~% is the Laplace transform of a non-negative function (see [?]) it is exponen-

tially convex. Obviously (¢ are n—convex functions for every t > 0.
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For this family of functions, piq (A, T's) , in this case for [a, B] C RT, from (4.31) becomes

1
A(G) | t-a .
(A(Cq)) ) t#q;
peg (ATa) =3 eap (Jixt(icf;) B tlggt> o t=aF L
1 A(id.G) —
exp <_T+1 A(Cl)l ), t=gqg=1,

where id is the identity function. By Corollary 4.2 py (A, I'3) is a monotone function in param-
eters t and q.

Using Theorem 4.2 it follows that
M, (A, T3) = —L(t,q)logps,q (A, T3),
satisfy
a< M g(AT3) <p.

This shows that My, (A,T's) is a mean. Because of the inequality (4.30), this mean is monotonic.

Furthermore, L(t,q) is logarithmic mean defined by

t—q .
logt—logq’ t# 9

Example 5.4 Let

Iy ={A;:(0,00) = R: t € (0,00)}

be a family of functions defined by

Since ddy;ﬁt (z) = e~V is the Laplace transform of a non-negative function (see [?]) it is expo-

nentially convex. Obviously Ay are n—convex function for every t > 0.
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For this family of functions, pq (A, T4), in this case for [a, 8] C RY, from (4.31) becomes
1

A(Ay) ) 7a ,

(A(Aq)) ) t # q;

AGdA)  n o
erp (_MA(AZ) - 27) 1=

By Corollary 4.2, it is a monotone function in parameters t and q.

fit.q (A, Ty) = i=1,2.

Using Theorem 4.2 it follows that
My (A,T3) = = (VE+/a) npieg (A,T)
satisfy
a< M ,(ATy) <p.

This shows that M4 (A,T'y) is a mean. Because of the above inequality (4.30), this mean is

monotonic.
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Matrix Transformations in Sequence Spaces

S. Nanda * and Smruti Mohanty T

Abstract

The purpose of this paper is to present a survey of results on matrix transforma-
tions in sequence spaces which contains some open problems for further study.
Keywords: Sequence spaces, matrix transformations, bounded sequences, conver-
gence sequences, almost convergence.
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1 Introduction

Let X and Y be any two non empty subsets of the space of all complex sequences. Let A =
(ank), (n,k = 1,2,3,...) be an infinite matrix of complex numbers. We write Az = (A4,(x)), if
Ay (x) =3 apkxy converges for each n. If 2 = (x) € X implies that Az = (A,(z)) € Y, then
we say that A defines a matrix transformation from X into Y and we denote it by A: X — Y.
The sequence Ax is called the A-transform of x. By (X, Y) we mean the class of all matrixes A

such that A: X — Y. If in X and Y there is some notion of limit or sum, then we write (X, Y,

*Corresponding Author Department of Mathematics, IIT Kharagpur, Kharagpur 721302, India and KIIT Uni-

versity, Bhubaneswar, India , *,email: snanda@kiit.ac.in
fIGIT, Sarang, Odisha, India T, email:
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P) to denote the subset of (X, Y) which preserves the limit or sum. In this paper, we present
a table which is a survey of results, contains some open problems on matrix transformations.
In the table the number, say 48, stands for the result on the transformation from the space
occurring in the row containing 48 into the space occurring in the column containing 48. In the
table, where no number is mentioned is an open problem, the result corresponding to that has
not been solved yet. This is an extension of the table presented in Stieglitz and Tietz (35). In
the list of results N, K and K* denote arbitrary finite subsets of the set of all positive integers.
We first present some important definitions, notations and conventions which will be used in
describing results on matrix transformations.

If {px} is a bounded sequence of strictly positive real numbers, then we define :

loo(p) = m(p) = {z : supg|xkP* < oo},
Co(p) = {x : |zx[** — 0},

c(p) ={z: |z —l|P* — 0, for some [}

I(p) = fo: 3 o™ < o0},
k

1 n
w(p) = {z : ” Z |z — l|P* — 0, for some [}
k=1

Write

Then,

ms(p) = {53 1Sz € lw(p)}
cs(p) = {z : Sz € c(p)}

(co)s(p) = {z : Sz € co(p)}
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If pr, = p for all k, then we have
loo(p) = m(p) = loo = M, Co(p) = co,c(p) = c,
U(p) = lp, w(p) = wp, ms(p) = ms
Cs(p) = Cs, (Co)s(p) = (Co)s
Ifp=1thenl,=10; =land w, =w; =w

1
If pr, = z then ¢c,(p) =T

We have
bv={x: Z [Ty, — Tp—1| < 00},
bv, = bv ﬂ Co
Write
A% = 3 (1) ()T
k=0

q* = cm{aj : Z(n—i— ap, — 1)|A%" < oo}

n

Let {p,} be a bounded sequence of positive real numbers and {v,} any fixed sequence of non

zero complex numbers satisfying

: 1
lim |vp|» =7(0 < r < c0)
n

Define a function
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We define

Dé\(p) = {f : f(z) = anzna |anvn’pn — O},
Dé\o(p) = {f : f(Z) = anzn, sup|anvn|p" < OO},

DA(p) = {f : f(z) = anzn7 Z |anvn‘pn < 00}7

if p, =1 for all n,

D (p) = Dy, DX.(p) = D&, and D*(p) = D}’
1

Put t,n(x) = - Z Tt

Ty = a1+ ao + ...... + ap,
1 m

O, n(a) = ——— Z’L Apyi, m>1
m(m+ 1) —

O, (a) = ay

Then for a bounded sequence {p,,}, pm > 0 we have

¢(p) =A{x: |[tmn(x) — I[P — 0, for someluniformly in n}
I(p) = {a: Z | Py (a)|P™ converges uniformly in n},
m

if py =p forallm, é(p)=¢ l(p)=landifp=1, I(p) =11 =1

We define

E.(c)={x={zx} : K'z €c}
E.(co) ={z:k'z €co}

E,(m)={z:k"z € m}
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We now state all the results mentioned in Table-1, which appears at the end.

Ae (m, m)=(c, m)=(co, m) <= 1.1

supz |an| < oo,
"k

A€ (ms, m) & (2.1),(2.2),
liin ank = 0 for all n,

supz |ank — Ap jt1| < 00.
"ok

A€ (cs, m) < (2.2),(3.1) & (3.2)
sup | lim apx| < 0o
n |k
S
n
k

A€ ((co)s, m) & (2.2).

A€ (ly), m) < (5.1)

1 1
su ankl? < oo, 1< p<oo, —+—=1.
fZ]n| p )

A q

Ae(l, m) & (6.1)

sup |ank| < oo.
n, k

A€ (¢*,m) < (7.1),(7.2)

sup\Zank] < 00.
"k

n,l k=0

A€ (bv, m) & (T.1),(8.1) < (8.2)
l

sup| Y~ ank| < 0,
n, 1 k=0

l+a—1\"' I+k+a—1
sup|< . > Zank< - >|<oo
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[e.e]
sup\Zank] < 00,
O -

A € (bvg, m) < (8.1).
Ae (T, m) < (10.1)
1
sup [ank |k < 00

n,

Ae (A, m)e (111)

The sequence{ f,,(z)} wheref,(z) = Z anp 2X(n=1,2,)
p=1

of integral functions is uniformly bounded on every compact set (of the complex plane).

A e (Er(m), m)=(Er(c), m)(Er(co), m) < (12.1),

sup g |E™" ank| < oo,
n
k

A€ (Ex(ly), m) < (13.1)

1 1
supZ\k:_T ank|? < 0o, where » + p =1,1<p< 0,
n

k
A€ (Er(l), m) < (14.1)
sup [k™" ang| < oo,
n,k

Ae (DA, m)e (15.1)
Ank
su | < o0,
an\ o | < o0
k
A e (D8, m) < (16.1)
sup\%] < o0
n, k Uk

A € (m(p), m) = (c(p), m) = (co(p), m) & 17.1

1
sup E |ank| N Pe < oo, for every integer N > 1.
n
k

(11.1)
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1 1
Let 1 < pr < H and — 4+ — = 1, for every k,
b 4k

Then A € (I(p), m) < (18.1)

(18)

3 an integer B > 1 such that supz |ani|7® B™9% < co,Let 0 < py, <1 for every k  (18.1)
n

k

Then A € (I(p), m) < (18.2) sup |an|P* < oo
n,k

A€ (w,m) < (19.1)
t
S%pZt:Q Hl?X‘CLnM < 0o

Let 0 < pr <1 for every kThen A € (w(p), m) < (20.1)

o0
1
3 an integer B > 1 such that, supZm?x{(?B_l)Pk |ank|} < o0

" =0

Let 0 <p <1, Then ,A € (wy, m) < (21.1),(21.2)

n

oo
k3
sup E 2p mtax|ank| < 00,
t=0

where maximum is taken over k such that 2! < k < 2t+1(*)

1 1
Lletl<p<ocand —+ — =1.
Pr 4k

Then, A € (wp, m) < (21.2) holdssup > 27 {(|an|9)7} < oc
" =0

where sum is taken over k such that * holds
A€ (m,c) & (22.1),(22.2) & (1.1),

(22.1),(22.3) < (22.1), (22.4)

lim a,,;, exists for all k,
n

lim g lank| = E | lim ap|,
n n
k k

limz |ank — lima,i| = 0,
n k n

(18.2)
(19)
(19.1)
(20)
(20.1)
(21)

(21.1)

(21.2)

(22)

(22.1)

(22.2)

(22.3)
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Z |ank| converges uniformly in n
k
A€ (c, ¢) & (1.1),(22.1),(23.1)
A€ (e, ¢, P)e(1.1),(23.2),(23.3)
limz Qp) exists,
" k
lima,, =0V k,
limz ankr = 1
" k
A€ (co, ¢) & (1.1),(22.1)
A € (ms, ¢) < (2.1),(25.1),(25.2)
& (2.1),(2.2),(25.1), (25.3),
& (2.1),(22.1), (25.4),

& (2.1),(25.1), (25.4),

lim(ank — an k+1) exists for all k,
n

liglz |ank = Gngr] = ) | lim(ang — an g11)];
k k

lim D Jank = anpr1 — lim(any, = an y1)| = 0,

k

E ||ank — an k+1| converges uniformly in n

k
A€ (cs, ¢) & (2.2),(22.1)

A€ (cs, ¢, P) = (2.2),(26.1)
lima,; = 1 for all k
A€ ((co)s, €) & (2.2),(25.1)

Ae(l, c)=(5.1),(22.1),p>1

(22.4)

(23)

(23.1)
(23.2)
(23.3)

(24)

(25)

(25.1)

(25.2)

(25.3)

(25.4)

(26)
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Ac(l, ¢)e (6.1),(22.1)

A€ (¢ ¢ & (7.2),(22.1),(23.1)
Ac (by, ¢) & (8.1),(22.1),(23.1)
A € (b, ¢) & (8.1),(22.1)

Ae (T, ¢) < (10.1),(22.1)

Ac (A, )& (11.1),(22.1)

A€ (E.(m), ¢) < (35.1),(35.2)
lim{k ™" ay} exist for all k
> " |k™" apk| converges uniformly in m
j € (Er(¢), ¢) & (12.1),(35.1), (36.1)
lim) k" exists
Ae (Er(c:), ¢) < (12.1), (35.1)

A e (B (ly), ¢) < (13.1),(35.1)

A e (E(l), ¢) & (14.1),(35.1)

If Ac(c, ¢, P),

Then, A € (&, ¢) & (40.1)
lirrlnz |k — @p 1| =0
Ac (mlzp), ¢) & (41.1), (41.2)

1
Z |ank| N Pk converges uniformly in n, for every integer N > 1
k

lim Z Ank =

93

(40)
(40.1)
(41)
(41.1)

(41.2)
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A€ (c(p), ¢) & (41.2), (42.1), (42.2)
A€ (c(p), ¢, P) < (42.1),(42.3), (42.4)

There exist a constant B > 1 such that

-1
SupZankBpk < o0
"ok

Hm, > ane =0
k

Jim, > ani =1
k

A € (co(p), ¢) & (41.2),(42.2)
A€ (I(p), ¢) & (18.1),(41.2), 1 <p, < H
& (18.2),(41.2), 0<pp <1
A€ (w, ¢) & (19.1),(41.2), (42.2)
Ae (w, ¢, P) < (19.1),(42.3), (42.4)

A e (w(p), ¢) < (20.1,(41.2,(42.2,0 < pp, < 1
A€ (w(p), ¢, P) < (20.1),(41.2), (42.3), (42.2)0 < pp < 1
A€ (wy, ¢) & (21.1),(41.2),0<p <1
A€ (wy, ¢, P) < (21.1),(423),0 <p < 1
A€ (wp, ¢) & (21.1),(41.2),(42.2),1 < p, < 00
A€ (wy, ¢, P) < (21.2),(42.3), (42.4)

A€ (m, c) < (48.1)

(42)

(45)

(46)
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liﬁnz lank| =0
k

A€ (¢, o) & (1.1),(23.2),(49.1)

lirrlnz |k — @p 1| =0
Ae (cks, co) & (2.2),(23.2)
A€ ((co)s, co) & (2:2),(53.1)
lim(app, — app+1) = 0 for all k
A€y, co) & (5.1),(23.2),p > 1
Ac(l, c) & (6.1),(23.2)
A€ (q%, o) & (7.2),(23.2), (49.1)
A e (v, ) & (8.1),(23.2), (49.1),
& (8.2),(23.2), (49.1)
A€ (bw, o) < (8.1),(23.2)
Ac (T, ¢) < (10.1),(23.2)
Ae (A, ¢) & (11.1),(23.2)
A€ (B (m), co) & (61.1)
117{11%: k" ank] =0

A€ (B (c), co) < (12.1),(62.1), (62.2)

95
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lim [k~ @y = 0 for all k
lin > (kT ank} =0
Ae (Er(col)g, co) & (12.1),(62.1)
A€ (B (ly), c) & (13.1),(62.1)
A€ (B(l), c) & (14.1,(62.1)
Let A € (cor Co),

Then A € (c,, (6,) & (40.1)
A€ (m(p), co) & (41.1), (42.3)
A€ (clp), o) & (42.1),(42.3), (68.1)
Jim D ani =0

r
A€ (colp), co) & (42.1),(42.3)

A€ (I(p), co) & (18.1),(42.3), 1 < py < H < 0
A€ (I(p), c) & (18.2),(42.3), 0 < py < 1
A€ (w, ) < (19.1),(42.3), (68.1)

A€ (wp), co) & (20.1),(42.3),(68.1), 0 < pp < 1
A€ (wp, ¢,) & (21.1),(423),0 <p <1
A€ (wp, o) & (21.1),(42.3), (68.1),1 < p < o0
A€ (m, ms) = (¢, ms) = (co, ms) & (T4.1)
Sipz | iam <0

k=0

A € (ms, ms) < (2.1),(75.1)

(68.1)
(69)

(70)
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m
supz \ Z Apk — A ft1| < 00
m
k. n=0

A€ (cs, my) = (75.1), (76.1) < (76.2)

m
sip|li’£n2ank| < 00

n=0
h#LnZ | Zank - CLn,k—l—1| < 0
k  n=0
A € ((co)s, ms) < (75.1)
Ae(ly, mg) = (78.1),p>1
“ 1 1
up Y| anela < oo, 1421
"k n=0 p q
Ae(l, my) & (79.1)

m
sup| > e < oc

mk n=0

A € (¢%, ms) < (80.1),(80.2)

m
sup\ZZank\ < o0
m

n=0 k
m 1
l+a—-1\. _ l—k+a-—1
Supl( z )pzz( e >ank\<oo
m, n=0 k=0

A € (bv, my) < (80.1), (81.1) < (81.2)

m [e.9]
Sup|ZZank\ < o0
M b n=0 k=1

A€ (v, ms) < (81.1)
A € (m(p), ms) < (83.1)
m 1
su ank|NPe for every integer N > 1
up D 1D anl y integ

k n=0
Ae(m, c;) & (84.1) & (84.2)

97
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& (84.3),(84.4)
5 SI) SIMED DED Sr
k. n=0 k n
lim) | i ank| =0
k. n=0

m
Z | Z ank| converges uniformly in n
k n=0
oo
Z ank converges for all k

n=0

A€ (¢, cs) & (T4.1), (84.4), (85.1)

A€ (¢, s, p) & (74.1),(85.2), (85.3)

Z Zank converges

n k

> " api =0 for all k
> Y=
Ae (c(: cs)k<:> (74.1), (84.1)
A€ (my, ¢;) & (2.1),(87.1) & (2.1),(87.2)
& (2.1), (84.1), (87.3)

& (2.1), (87.3), (87.4)
hgln Z ’ Z(ank - an,k+1|
k  n=0
= Z | Z(ank - an,k+1|
k n

[ee]
limz | (@nk — Gp 41| =0
m

k n=m

m

Z | Z(ank — ap k41| converges uniformly in m

k  n=0

(84.1)

(84.2)

(84.3)

(84.4)

(85)

(85.1)

(85.2)

(85.3)
(86)

(87)

(87.1)

(87.2)

(87.3)
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Z(a”k — ap k+1) converges for all k
n

A€ (cs, ¢5) & (76.2),(84.4)

A € (cs, 5, p) < (76.2),(88.1)

> (ank) =1 for all k
A€ ((co)s, ¢s) < (75.1),(87.4)
A€ (ly, cs) & (T8.1),(84.4),p > 1
A e (l, ¢) = (T9.1), (84.4)
A€ (q% c5) & (80.2),(84.4), (85.1)
A e (v, ) & (81.1),(84.4),(85.1)
A€ (bw, ¢5) & (81.1), (84.4)

A e (m(p), ¢s) < (95.1),(95.2)

m
1
Z ] Z ank|N Pt converges uniformly in m, for every integer N > 1,
k  n=0

Z ank converges for all k

n

A € (c(p), cs) < (96.1),(96.2), (96.3)

n
-1
supz | Zaik]B P < 0o for some integerB > 1,
"ok =1

lim Z ank exists for all k

n—o00 4
=1

A e (I(p), cs) < (97.1),(97.2)

99

(87.4)

(88)

(88.1)

(95.1)

(95.2)

(96)

(96.1)
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There exists an integer B > 1 such that

[e.e] n

sup » | ai|™ B~ < 00, (1 < pj, < 0)
n

k=1 =1

n
sup]Zaik\pk <00,(0 <pp <1)

nk

n—oo

lim Z a;, exists for all k
=1
A€ (m, (co)s) < (98.1)

im ) > an| =0
k. n=0

A€ (¢, (cp)s) < (T4.1),(85.2),(99.1)

> Y=o

n k
A€ (Co, (CO)S) = (74.1), (85.1)

A€ (ms, (c)s) & (2.1),(101.1)
linrlnz | iank — dppt1] =0
k. n=0
A€ (cs, (co)s) & (75.1), (85.2)
A€ ((co)s, (co)s) & (75.1),(103.1)
> (ank = anjs1) =0 for all k
Ac zlp, (co)s) & (78.1),(85.2),p > 1
Ae(l, (co)s) < (79.1),(85.2)
A€ (g% (co)s) & (80.1), (85.2), (99.1)

A€ (b, (co)s) < (81.1),(85.2), (99.1)

& (81.2),(85.2), (99.1)

(97.1)

(97.2)
(98)
(98.1)
(99)
(99.1)
(100)
(101)
(101.1)
(102)
(103)
(103.1)
(104)
(105)
(106)

(107)
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A€ (bro, (co)s) & (81.1), (85.2)
A€ (m(p), (co)s) < (95.1), (109.1)

Z ank converges to zero for all k

n

Ae(m, 1) =(c 1) = (co, Ir) & (110.1)

< (110.2),r > 1

sipZ\ Z ank|” < 00

n  keK

Z ] Z ank|"converges for all k
n  keK

A€ (my, 1) < (2.1),(111.1);7 > 1

Sl;pZ’ Z(ank - an,k+1|T < 00

n  keK
A€ (cs, ;)= (112.1),r > 1

Sl}ip Z ’ Z (ank - an,k—&-l‘r < o0

n  keK

A€ ((co)s, Ir) & (111.1),7r > 1
Ae (lp, lr),p>1,r>1 is unknown
Ae(l, l,) < (1151),r > 1
St;pzn:\(ankr <0

Ac(¢® 1) = (116.1),(116.2),r > 1

Z | Z(ank |" converges
n k

l
[+a—1Y\ _ l—k+a-1 -
a1 (T T el <
n k=0

Ae (b, I,) & (116.1), (117.1) & (117.2),r > 1

101

(108)
(109)
(109.1)

(110)

(110.1)

(110.2)
(111)
(111.1)
(112)
(112.1)
(113)
(114)
(115)
(115.1)
(116)

(116.1)

(116.2)

(117)
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!
sgpz | Z(ank|’" < 00
k=0

n

(o0}
SLllpZ ] Zankr < 00
=l

n k
A€ (b, ;) & (117.1),r > 1
Ae (D}, 1) < (119.1)
a/TL]C T
su —|" < o0
kpgl |
A e (m(p), ly) = (c(p), ly) = (colp), Ir) & (120.1),1 <7 < 0

1
Z(Z |ank|NPx)" for every integer N > 1,
n k

A € (co, m(r)) < (121.1)

Sup(z |ank|)™ < oo

ok
A € (co(p), m(r)) < (122.1)

There exists an integer B > 1 such that

;1
sup( ) _ |ank| B )™ < 00, p,r € m
n
k

A € (co, o(r)) & (121.1),(123.1)
lim [a,™ =0
A€ (co(p), colr)) & (122.1),(123.1)
Ae(m, 1) =(c, 1) = (co, 1) & (125.1)

& (125.2) < (125.3) < (125.4)

su;li|z Zank|<oo
n

’ neN keK

supZ\ Z ank| < 00
N Tk

neN

(117.1)

(117.2)
(118)
(119)

(119.1)
(120)

(120.1)
(121)

(121.1)

(122)

(122.1)

(123)
(123.1)
(124)

(125)

(125.1)

(125.2)
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S;l(pZI D k] <0

n  keK

Z\Z ank| < 00

n  keK
A€ (mg, 1) & (2.1),(126.1)

]SVUEI Z Z(ank — anp41)| < 00

neN keK
A€ (cs, 1) = (127.1)

Eu%\ > (ank = anp-1)| < o0

» M neN keK
A€ ((co)s, 1) & (126.1)

Ae(ly, 1)< (129.1),p< 1

wp S ol < o
N

neN
Ae(l, 1) e (130.1)

sup 3 ] < o0
k n

Ae(¢® 1) & (131.1),(131.2)

Z | Z ank| convergent
n k
l
l+a—-1\ _ l—k+a—-1
P e
n k=0

A (bu, 1)< (131.1),(132.1) < (132.2)

o0
SlllpZIZank! <00
k=0

n

(@)
SLllpZ\Zank] < 00
=l

n k
A€ (b, 1) < (132.1)

A€ (B (m), 1) = (Er(c), ) = (Er(co), 1) < (134.1)

103

(125.3)

(125.4)
(126)
(126.1)
(127)
(127.1)
(128)
(129)
(129.1)
(130)
(130.1)
(131)

(131.1)

(131.2)
(132)

(132.1)

(132.2)
(133)

(134)
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Sup|ZZk " apk| < 00

neN keK
A€ (E\(ly),l) < (135.1)

supZ]Z E™" angl? < oo

neN
Ae( E.(), 1) & (136.1)

sup D ETT ank| < 00
n

Ae (DA, 1) (137.1)

ZZ lank, Un] < oo
n k

Ac (mp), 1) = (c(p). 1) = (colp), 1) & (138.1)

S N < oc

n k

for every integer N > 1

Ac (m, )& (22.1),(22.4), (139.1)

sup|22<”+5 )f (7l <

neN keK r=0

Ae (e, ¢°) e (1.1),(22.1),(23.1),(139.1)
A€ (co, ¢°) & (1.1),(22.1),(139.1)

A€ (ms, ¢°) & (2.1),(25.1),(25.4), (142.1)

Y (M )Z( (7 ewsrs — o] < o0

neN keK r=0
A€ (es, ¢°) & (2.2),(22.1), (142.1)

A€ ((c0)s, ¢°) & (2.2),(25.1), (142.1)

A€ Iy, ¢°) & (5.1),(22.1),(145.1)

(SUPN 2k | 2nen(n+ 5~ 1)
)Z ( ) ( )an+rk|q

(134.1)
(135)
(135.1)
(136)
(136.1)
(137)
(137.1)
(138)

(138.1)

(139)
(139.1)
(140)
(141)
(142)
(142.1)
(143)
(144)
(145)

(145.1)
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A, &) e (6 1), (22.1), (146.1)

n+p—
S Sy ol <
n

Ac (¢ ¢°) & (7.2),(22.1),(23.1), (147.1), (147.2)

_ B
Z(n h 1)| Z(_l)r(g)an+r7k’ convergent
r=0

n
n

B
ap SISy ey

r
r=0

l

l—k+a-1
E an—l—r,k( I — k )ank:| < o0
k=0

A (b, ¢°) & (8.1),(22.1),(23.1), (147.1), (148.1)

& (8.1), (22 1), (23.1), (148 2)

w3 RS o zawmoo

r=0

supz"”‘l e fzanwrm

r=0

A € (brg, ¢°) < (8.1),(22.1), (148.1)

A€ (m, bv) = (c, bv) = (co, bv) < (150.1)

SUP‘ZZ Ank — Qp— 1k‘<OO

neN keK
A € (my, bv) & (2.1), (151.1)

sup N, K| > [(ank — anpt1) = (@ngp—1 — Gn-1441)]| < 00

neN kek
A € (cs, bv) & (152.1)

Sup | Z Z Unk — Op k— 1 (an,k—l - an—l,k—l)” < o0

neN keK
A € ((co)s, bv) & (151.1)

A€ (I, bv) & (154.1),p> 1

105

(146)
(146.1)
(147)

(147.1)

(147.2)

(148)

(148.1)

(148.2)
(149)
(150)

(150.1)
(151)

(151.1)
(152)

(152.1)
(153)

(154)
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Sl]i}p2| Z(ank - an—l,k)|q < o0
k

neN
Ae(l, bv) < (155.1)

SIIICPZ |(@nk — an—1k)| < o0

n

A€ (¢%, bv) & (156.1), (156.2)

E | Z(a”k — Gp—14)| convergent
n k

MN

l+a—1
s S0

(ank - anfl,k)( I — k

e
i

0

A€ (bv, br) & (156.1), (157.1) & (157.2)

& (157.1), (157.3)
sup Y |
L%
Sup >

k

(ank - an—l,k)‘ < 00

M -

(ank — an—1%)] < o0

=
Il

l

Z ank converges for all n
l
A € (bwy, bv) & (157.1)
A € (m, biy) < (48.1),(150.1)
A € (¢, bry) & (23.2),(49.1),(150.1)
A € (co, bpy) & (23.2),(150.1)
A € (mg, by) & (2.1),(51.1), (151.1)
A € (cs, bip) < (23.2),(152)

A € ((cg)s, bry) < (53.1), (151.1)

A € (I, bry) < (23.2), (154.1)

l—k+a-—1

(154.1)
(155)
(155.1)
(156)

(156.1)

(156.2)

(157)

(157.1)

(157.2)

(157.3)
(158)
(159)
(160)
(161)
(162)
(163)
(164)

(165)
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A€ (1, b)) & (23.2), (155.1) (166)
A€ (¢, bup) & (23.2), (49.1), (156.1), (156.2) (167)
A e (bv, bry) < (23.2),(49.1), (157.1) (168)

& (23.2),(49.1), (157.2)

A€ (bug, bug) < (23.2), (157.1) (169)

A€ (m, T) = (c(p), T) = (co, T) & (170.1) (170)
lim( lank])n = 0 (170.1)

Ae (: T) < (171.1) (171)

lim |api|® = 0 uniformly in k (171.1)

Ae (T, T) e (172.1) (172)

For each positive integer q, 3 p(q) > ¢ and a constant M (p,q) such that for k=1,2,.......

Z lank|q"p™" < M independently of k (172.1)
Ae(AT) & (173.1) (173)
]fn(z)]% —0asn— o (173.1)

uniformly on every compact set (of the complex plane) where {f,(z)} is the sequence of all

integral functions f,(z) =, ane®, (n=1,2,...... )

Ae (Er(m)v F) = (ET(C)7 F) = (Er(co)a F) < (174'1) (174)
Hm (>~ k" fan])w =0 (174.1)

k
Ae (B(), T) & (175.1) (175)

lim k" |7 = 0 (175.1)
n
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where n — oo uniformly in k

Ae(m, A)=(c, A) =(co, A) = (176.1) (176)
sup(_ lank))7 =0 (176.1)
"k

Ae(l, A) s (177.1) (177)
sup ]ankﬁ =00 (177.1)

n, k
Ae (T, A) < (178.1) (178)
sup\ank|%+k = 00 (178.1)

n, k
Ae (A, A) & (179.1) (179)

For all € > 0, there exist M = M (e) such that:

lank| < €M™ (n,k=1,2,....) (179.1)
A€ (Ey(m), A) = (E,(0), A) = (Eu(e,), A) & (180.1) (150)
sup(z ]k_’”ank])% =00 (180.1)
"ok
A€ (B (), T) < (18L.1) (181)
sup |k api|)n = oo (181.1)
n, k
A € (m, Es(m)) = (¢, Es(m)) = (co, Es(m)) < (182.1) (182)
sup(z In® ank|) < oo (182.1)
"k
A€ (I, Es(m)) < (183.1) (183)
sup [n’ank| < 00 (183.1)
n, k

A€ (T, Ey(m)) < (184.1) (184)
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sullz\ns ank\% =00 (184.1)
A€ (A, Ey(m)) < (185.1), (185.2) (185)
The sequence { f,(z)} where
fulz) = insank K n=1,2,...) (185.1)
k=1

of integral functions is uniformly bounded on every compact set of the complex plane

1i7rln{ns ang } exists for each k (185.2)
A € (E.(m), Es(m)) = (Er(c), Es(m)) = (Er(co), Es(m)) < (186.1) (186)
supz [n® ank| < oo (186.1)
"k
A€ (E(l,), Es(m)) < (187.1) (187)
supz In® k™" angl? < oo, (187.1)
"k

1,1 _
Whereg—i—g—l

A€ (Eq(l), Es(m)) < (187.1) (188)
su[’i\ns E™" ankl < oo (188.1)
A€ (m, Ey(c)) & (189.1)(189.2) (189)
liﬁn [n® ani| exists for all k (189.1)
Z |n® ank| converges uniformly in n (189.2)

k
A€ (¢, Es(c)) < (182.1), (189.1), (190.1) (190)
liTILnZ In® ank| exists (190.1)

A € (co, Eq(c)) < (182.1),(189.1) (191)
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A€ (I, Es(c)) < (183.1), (189.1)

Ae (T, Ey(c)) & (184.1),(189.1)

A€ (A, Es(c)) = (A, Es(co)) < (185.1),(189.1)

A€ (E.(m), Es(c)) < (195.1),(195.2)
lim [n® k™" an| exists for all k

g |n® k™" ank| converges uniformly in n
k

A€ (E,(c), Eq(c)) < (186.1), (195.1), (196.1)

h,?lz [n® k™" ank| exists
k
A € (Er(co), Es(c)) < (186.1),(195.1)
A€ (E.(ly), Es(c)) < (187.1),(195.1)
A€ (Eq(l), Es(e)) < (186.1),(195.1)
A€ (m, Es(c,)) < (200.1)
1i711nz In® ank| =0
k
A€ (¢, Escy)) & (182.1), (201.1), (201.2)
liTILn{nS anr} =0 for all k
liénz [n® ank| =0
k
A € (co, Esle,)) < (182.1), (201.1)
A€ (I, Es(co)) < (183.1),(201.1)
A€ (T, Ey(c,)) < (184.1), (201.1)

A€ (B (m), Ey(c,)) < (205.1)

(192)
(193)
(194)
(195)
(195.1)
(195.2)
(196)
(196.1)
(197)
(198)
(199)
(200)
(200.1)
(201)
(201.1)
(201.2)
(202)
(203)
(204)

(205)
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1imz [n® k™" apk| =0
" k
A€ (Ey(c), Es(c,)) < (186.1),(206.1), (206.2)
Hm{n°k™" a,,} =0 for all k
1imz [n® k™" apk| =0
" k
A€ (Er(co), Es(co)) < (186.1),(206.1)
A€ (Er(ly), Es(c,)) < (187.1),(206.1)
A€ (E.(l), FEs(c,)) < (188.1),(206.1)

A€ (m, By(ly) = (¢, Ey(l)) = (cob Es(ly)) & (210.1)

SI;pZ| Z n® an|t < oo

n  kekK
A€ (I, Es(ly) < (211.1)

supz In® ank|" < oo
k

n

A€ (Er(m), Es(l)) = (Er(c), Es(l)) = (Er(co), Es(lr)) < (212.1)

supZ| Z k™" anlt < oo
k

n  keK
A€ (E.(l), Es(l)) < (213.1)
sup n°k™" ani|t < oo
! ;| k|

A€ (m, Es(l)) = (C, Es(l)) = (607 Es(l)) g (214'1)

sug\ Z Z [n® ank| < oo
n,

neN keK
A€ (l, By(1) & (215.1)

Supz [n® ank| < oo
k n

111

(205.1)
(206)
(206.1)
(206.2)
(207)
(208)
(209)
(210)
(210.1)
(211)
(211.1)
(212)
(212.1)
(213)
(213.1)
(214)
(214.1)
(215)
(215.1)

(216)
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]bvl71}13| Z Zns k™" ang| < oo

neN keK
Ae (E(ly), Es(1) & (217.1)

s%p;] Z n® k7" apgl? < oo

neN

1,1
where, = + = =1
,p-i-q

A€ (E (1), Es(l)) < (218.1)
sup n® k7" apkl < oo
A€ (m, DA < (219.1)
sup Y [an s, yn| < o0
"ok
Ae(l, DY) < (220.1)
sup ’an,lm yn| < 00
n, k
Ae (DL, DY) < (222)
A A
A€ (DA(p), DY) & (222.1)
(VS .
sugz lan, ks ﬁ—k|Npk < oo for every integer N > 1
n, &
Ae (DY, DY) < (223.1)
v
sup |an, k|, |?9—n| < 0
n, k k
Ae ((p), DL) & (224.1)

There exists an integer B > 1 such that

C(B) = Sl:lp; |an, &y Un|™* < 00

1 1 _
Where,p—k—kq—k—l,1<pk§H<oo

A € (co(p), Di(q)) < (225.1)

(216.1)
(217)

(217.1)

(218)

(218.1)
(219)
(219.1)
(220)
(220.1)
(221)
(222)
(222.1)
(223)
(223.1)

(224)

(224.1)

(225)
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Let p, q € o there exists an absolute constant B > 1 such that
-1
B= Sgp{; [an, ky On 7 1 < 00
Ae(l, DY) < (226.1)
supz lan, &, UnlP < 00
k n
A€ (DY, D)) & (227.1)
P Un p
Sl;pZMn, k| Iﬁfkl <00, 1<p<oo
n

A€ (I, DY) & (228.1)

ZZ ]an, k719k‘ < 0
k

n

Ae (DA, DM < (229.1)
> S o, 10 G < o
n k k
A e (DY, DY, p) < (230.1),(230.1)

0
sup |an, &, 19—”\ < 00
k k

9
Z]an K, —| =1 for all k
n , 19]{:

A€ (m, &)< (231.1),(231.2), (231.3)

supz |G om | < 00
mok

lim a(n,k,m)| = a; uniformly in n
m— 00

n}gnoo Zk: la(n, k,m)| — ax| = 0 uniformly in n

A€ (¢, &) & (231.1),(231.2), (232.1)

A€ (c, &,p) < (231.1),(231.2), (232.3)

113

(225.1)

(226)
(226.1)
(227)
(227.1)
(228)
(228.1)
(229)
(229.1)
(230)
(230.1)
(230.2)
(231)
(231.1)
(231.2)
(231.3)

(232)
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n%i_r}rloo zk: a(n, k,m)| = a uniformly in n (232.1)
W%iinooa(n, k,m)| =0 uniformly in n (232.2)
Tr%iinw;a(n, k,m)| =1 uniformly in n (232.3)

A€ (co, &) & (231.1),(231.2) (233)

Ae(ly, ¢) = (231.2),(234.2), 1 <p< o0 ]19 + ; =1 (234)

supz |an km|P < oo, (n=1,2,.....) (234.1)
ok

sug lan km|P < o0, (n=1,2,...) (234.2)
A€ (l, &) & (231.2),(234.2) (235)
A€ (bu, &) & (231.2),(232.2), (236.1) (236)
sup | ian,k7m| < oo, (ny,r=1,2,.....) (236.1)

M k=r
A€ (buy, &) < (231.2),(236.1) (237)
Let, A € (¢, & P) then, A € (¢, &) & (238.1) (238)
lim mi—l zk: | jo (@ntik — antik+i)| =0 (238.1)
A€ (m(p), &) < (231.1),(231.2), (239.1) (239)
n%iinoo Z la(n, k,m) — ag| N = 0 uniformly in n for every integer N > 1 (239.1)

k
A€ (clp), &) < (231.2),(231.2), (239.1) (240)
There exist some integer B > 1such that

sup 3" [a(n, k,m)|B7 < o0, (n=1,2, .. (240.1)

A € (colp), &) < (231.2),(240.1) (241)



Journal of Orissa Mathematical Society 115

1 1
A€ (l(p), ¢) < (231.2),(242.1), 1 <ppr < H< oo —+ — =1 for every k (242)
Pk qk

A€ (I(p), &) & (231.2),(242.2), 0 < p; < 1

supz la(n, k,m)|%B~% < oo, (n=1,2,.....) (242.1)
ok
sulz la(n, k,m)|PkF < oo, (n=1,2,.....) (242.2)
A€ (w, &) & (231.2),(232.1), (243.1) (243)
supimtax 2t|a(n, k,m)| < oo (243.1)
m =0
A€ (w(p), &) < (231.2),(232.1), (244.1) (244)
sup 3 max (2tB_1)i la(n, k,m)| < 00,0 < p <1 (244.1)
t=0
A€ (wy, &)< (231.2),(232.1), (245.1) (245)
o~ L 1 11
szp%%(? la(n, k,m)|?)s < 00,1 < p < oo, and o + - 1 (245.1)

[The summation is taken over k satisfying 2t < 2¢+1]

o0
supz max 2%\a(n,k,m)] <oo, 0<p<l1 (245.2)
™ =0

[The maximum is taken over k satisfying 2¢ < 2¢+1 ]

A€ (m, ))& (231.1),(246.1) (246)
ngnoo Zk: |a(n, k,m)| = 0 uniformly in n (246.1)
A€ (e, M) & (231.1),(232.2), (247.1) (247)
77%1_1}100 Z a(n,k,m) = 0 uniformly in n (247.1)
A € (co, ) & (231.1),(231.2) (248)

A€ (l,, ) e (232.2),(234.1),1 <p < 0 (249)

(]
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Ace (ly, ) = (232.2),(234.2),1<p< 1

o

Ae(l, &) < (234.2),(232.2) (250)

Ac (b, ) & (232.2),(236.1), (247.1) (251)
A€ (buy, ) < (232.2),(236.1) (252)

Let A € (co, ), then A € (¢, &) < (238.1) (253)
A e (m(p), ) < (231.1),(254.1) (254)
W}gnoo(%: la(n, k, m)|N)% =0 (254.1)

uniformly in n for every integer N > 1

A€ (c(p), &) < (232.2,(240.1), (247.1) (255)

A€ (co(p), ) < (232.2),(240.1) (256)
Ae((p), ) = (232.2),(242.2),0 < pp < 1 (257)
A€ (w, ) e (232.2),(243.1), (247.1) (258)

A e (w(p), ) e (232.2),(244.1), (247.1) (259)
A€ (wy, ) & (232.2),(245.1), (247.1),1 < p < 00 (260)

A€ (wy, ) (232.2),(245.2),0 <p < 1

(]

A€ (m, 1Y) = (cop 1Y) = (M 1) = (e, 1) & (261.1) (261)
s%pZ(Z b(n, k,m)|)" < oo (261.1)

:e (l;, M & (262.1) (262)

SﬁZ |b(n, k,m)|)" < 00,1 <1 < oo (262.1)

A€ (m(p), 1Y) = (c(p), 1)), = (cop), ') & (263.1) (263)
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1
sup S (S [b(n, &, m)|N7E) < oo
n m k

Ae (m, M) =

n, m m

for every integer N > 1

A€ (1, 1Y) & (265.1)

Ae(l, 1Y) & (266.1)

sup b(n,k,m)| < oo
nkZl )|

A€ (m(p), 1) = (c(p), 1) = (co(p),

supZ|b (n, k m)|]\7pk)

n,

m

(c, 1Y), = (&, 1M = (4,

M)

1
Z\ankm\q<oo 1<p<oo, ;4—
k

& (265)

1,
dk
M) < (267.1)
(0.}
N>1

for every integer

Ae (m, ™) = (¢, ) = (¢, ) =

= (ch, ) &

There is a constant K > 0 such that

> le(n, kym)| < K for all n
m  k

(", bt

(268.1), (268.2), (268.3)

mlgnoo Z le(n, k, m)| = aj uniformly in n

W}gnooz le(n, k, m)— ag| = 0 uniformly in n

k

Ae (b, ) =

There is a constant K such that

k

(269.1), (269.2), (268.2)

117

(263.1)

(264)

(265)

(265.1)
(266)
(266.1)
(267)

(267.1)

(268)

(268.1)

(268.2)

(268.3)

(269)

(269.1)
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nlgnoozk: le(n, k, m)| = ag uniformly in n

A € (co, ¢(r)) & (270.1),(270.2)

lim |a(n, k, m)|"™ =0 uniformly in n
m—0oQ

A € (colp), A(r)) & (270.2),(271.1)

o

There exists an integer n > 1 such that

sup{z la(n, k, m)]B;Tcl}Tm < o0
ok
A€ (m, 1) & (272.1), (272.2)

E |bpi| converge uniformly in n
k

There exists o € C such that

lim b, = a4 for all k
n—oo

A e (m(p), 1) & (272.2),(273.1)

For all integer N > 1

1
g |bpg| N Pk converges uniformly in n
k

A€ (c(p), a1) & (272.2),(274.1),(274.2)

-1
D= supz |bpi|BPe < oo for some integerB > 1
n

k
There exists o € C' such that

Hm > bu =
A€ (l(p), ar) & (272.2),(275.1)

There exist an integer B > 1 such that

C(B) < oo (1 <pp <o0) sup|bpg|P* < oo (0 <pr <1)

n,k

(269.2)

(270)
(270.1)
(270.2)

(271)

(271.1)

(272)

(272.1)

(272.2)

(273)

(273.1)
(274)

(274.1)

(274.2)

(275)

(275.1)
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A€ (m, |erly) = (276.1) (276)

> O lank)? < o0 (276.1)

Let, p zn 1,164 e (I, |eilp) < (278) (277)
A€ (m(p), |ealp) < (278.1) (278)

For every integer N > 1

S e N7 < oo (278.1)
n k
Ae (ly, |e1]) < (280) (279)
A€ (I, |ei], p) < (280.1), (280.2) (280)
sgpz |enk| < o0 (280.1)
Z e = 1 for all k (280.2)
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bv

E,(c)

B (e,)

D

A

fe.|

c e m| e A q b, | T | A |Em) E (1) |E.() | D} |DXa) |py | DY |t | |4 |4 [ |90 ]« L | el
m 1 22 | 48 | 74 | 84 | 98 | 110 | - - 125 | 139 | 150 | 159 | 170 | 176 | 182 189 200 | 210 | 214 | 219 - - | 228 | 230 | 246 | 261 | 264 | 268 - 72 | 276 -
¢ 1 23 | 49 | 72 | 85 | 99 | 110 | - - 125 | 140 | 150 | 160 | 170 | 176 | 182 190 200 | 210 | 214 | - - - - | 231| 247 | 261 | 264 | 268 - - | 276 -

s 1 24 | so | 74 | 86 | 100 | 120 | 121 | 123 | 125 | 141 | 150 | 161 | 170 | 176 | 182 191 202 | 210 | 214 | - - - - | 232| 248 | 261 | 264 | 268 | 270 | - - -

m, 2 25 | s1 | 75 | 87 | 100 | 111 | - - 126 | 142 | 151 | 162 | - - - - - - - - - - - - - - - - - - - -
Cs 3 26 52 76 88 102 | 112 - - 127 | 143 | 152 | 163 - - - - - - - - - - - - - - - - - - . .

(c,), 4 27 | s3 | 77 | s | 103 | 113 | - - 128 | 144 | 153 | 164 | - - - - . - - - : B B : : : : B . . . .
L 5 28 | sa | 78 | o0 | 104 | 124 | - - 129 | 145 | 154 | 165 | - B B B - B B . . . ol 23a| 240 | - | 265 | - i i i i
1 6 29 | ss | 79 | o1 | 105 | 115 | - - 130 | 146 | 155 | 166 | 171 | 177 | 183 192 203 | 211 | 215 | 220 - 226 | - |235| 250 | 262 | 266 | - - - | 277 | 279
q" 7 30 | s6 | so | 92 | 106 | 116 | - - 131 | 147 | 156 | 167 | - - - - - - - - - - - - - - - - - - - -
bv 8 31 | s7 | s | 93 | 107 | 17 | - - 132 | 148 | 157 | 168 | - - - - - - - - - - - |26 | 22| - - | 269 - - - -
bv, 9 32 58 82 94 108 | 118 - - 133 | 149 | 158 | 169 - - - - - - - - - - - | 237 | 252 - - R - - - .
r 10 | 33 | s9 - - - - - - - - - - | 172 | 178 | 184 193 204 - - - - - - - - - - - - - - -
A 11 | 34 | 60 - - - - - - - - - - | 173 | 179 | 185 194 194 - - - - - - - - - - - - - - -
E, (m) 12 | 35 | & - - - - - - 134 | - - - | 172 | 180 | 186 195 205 | 212 | 216 | - - - - - - - - - - - - -
E,(c) 12 36 | 62 - - - - - - 134 - - - | 17a | 180 | 186 196 206 212 | 216 B . B . . . . . B . i i .

E, (c,) 12 37 | e3 - - - - - - 134 - - - | 17a | 180 | 186 197 207 212 | 216 B i B . . . . . ) . . . i

E, (Ip)

lepem | B | 3| & - - - - - - 135 - - - - - 187 198 208 - 217 | - - - - - - - - - - - - -

E (1) 14 | 39 | 65 - - - - - - 136 | - - - | 175 | 181 | 188 199 209 | 213 | 218 | - - - - - - - - - - - - -
D)} 15 - - - - - - - - 137 - - - - - - - - - - 221 - - | 229 | - - - - - - - - -
D; (p) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
D) -1 -1-1T-17-17-17T-17-7T-17-17-1T-7T-71- - : T Tt -1T-17-17-17-1T-7T-
D} 16 - - - - - 119 - - - - - - - - - - - - - 223 - 227 | 230 | - - - - - - - - -
ct - 40 - - - - - - - - - - - - - - - - - - - - - - | 238 - 261 | 264 | 263 - - - -
c! - - 66 - - - - - - - - - - - - - - - - - - - - - - | 253 | 261 | 264 | 268 - - - -
m(p) 17 | a1 | 67 | 8 | 95 | 109 | 120 | - - 138 | - - - - - - - - - - - - - - | 239| 254 | 263 | 267 | - - 273 | 278 -
c(p) 17 | 42 | 68 | 83 | 9 - 120 | - - 138 | - - - - - - - - - - - - - - | 240 | 255 | 263 | 267 | - - 7a | - -
¢, (p) 17 43 | 69 | 83 - - 120 | 122 | 124 | 138 - - - - - - - - - - - 225 - - | 241 | 256 | 263 | 267 - 271 - - -
I(p) 18 a4 | 70 - 97 - - - - - - - - - - - - - - - 224 - - - | 242 257 | - - - - 275 | - -
2 19 | 45 | 7 - - - - - - - - - - - - - - - - - - - - - | 243 258 | - - - - - - -
o(p) 20 | 46 | 72 - - - - - - - - - - - - - - - - - - - - - | 244 259 | - - - - - - -
® n | a7 | 73 - - - - - - - - - - - - - - - - - - - - - | 2as| 260 | - - - - - - -
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