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Abstract. In this paper, we consider pseudolinear multiobjective mathematical programs
with equilibrium constraints. We establish necessary and sufficient strong efficient S-stationary
conditions for a feasible point without using any constraint qualification. Although, neces-
sary optimality conditions required constraint qualification, but in pseudolinear case there is
no requiement of constraint qualification due to its own characterization. Since duality pro-
vide lower bound to the objective function therefore it have good advantage, so we propose
Mond-Weir type dual models for a pseudolinear multiobjective mathematical program with
equilibrium constraints and deduce usual duality results. Furthermore, some examples are
presented to illustrate our results.
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1. Introduction

A mathematical programs with equilibrium constraints (MPEC) is a constrained
optimization problem where constraints include equilibrium constraints, such as vari-

ational inequalities or complementarity conditions. MPECs has various applications
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in process engineering [ 1], hydro-economic river basin model [2], traffic and telecom-
munications networks [3, 4]. MPECs are difficult to solve because the feasible re-
gion is not necessarily convex or connected, which cause MFCQ to not hold at every
feasible point. This leads to linearly dependent active constraints, the set of multipli-
ers being unbounded, and inconsistent linearizations arbitrarily close to a stationary
point [5] also Abadie constraint qualification (ACQ) do not satisfy (see, [6]). Scheel
and Scholtes [7] discussed several stationarity conditions like Bouligand stationary
(B-stationary), weakly stationary (W-stationary), Clarke stationary (C-stationary),
strong stationary (S-stationary) in equilibrium constraints sense. Flegel and Kan-
zow [16, 17] proposed new constraint qualifications for the MPEC and introduced
Karush-Kuhn-Tucker type stationary conditions for the MPEC. Ye [6] established
the relationship among Mordukhovich stationary (M-stationary) and several other
stationary conditions along with necessary and sufficient optimality conditions for
the MPEC.

In real-life, the formation of problems are usually multiobjective. Mordukhovich
[18] and Bao er al. [19] studied multiobjective optimization problems with equilib-
rium constraints and established necessary optimality conditions. Recently, Zhang et
al. [20] extended the existing constraint qualifications from a single objective to the
multiobjective case and established various stationarity conditions under the proper
Pareto sense. Further, Zhang er al. [21] established strong Pareto S-stationarity op-
timality conditions for multiobjective mathematical programs with equilibrium con-
straints. Pandey and Mishra [8] proposed strong KKT type sufficient optimality con-
ditions for nonsmooth multiobjective semiinfinte MPEC. Further, Mishra er al. [9]
established the duality results for MPVC. For a more treatment of the probable ap-
plications of MPEC and MPVC, we refer [10, 11, 12, 13, 14, 15] and references
therein.

In 1967, Kortanek and Evans [22] studied some properties of a class of functions,

which are both pseudoconvex as well as pseudoconcave. This class of functions was
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later named as pseudolinear functions by Chew and Choo [23] and established first
and second order characterizations for this class of functions. Mishra et al. [24]
characterised the Lagrange multiplier of solution sets of a nonsmooth pseudolinear
optimization problem. For a comprehensive survey on pseudolinear functions and
their applications, we refer to the monograph of Mishra and Upadhyay [25].
Therefore, in this paper we consider the pseudolinear multiobjective mathematical

programs with equilibrium constraints (PMMPEC) as follows:

min f(Z) — (fl (Z)a"'vfp(z))v
subjectto g;(z) 20 (i=1,...,q), hi(z)=0(i=1,...,r), (1.1)
(

G; Z) ; 0‘; Hi(Z) 2 Ou Gi(Z)Hi(Z) =0 (l = 17"'1m)v

where f; : R" - R, g;: R" > R, h; : R" = R, G; : R" — R and H; : R" — R" are con-
tinuously differentiable pseudolinear functions on R”. There are some applications
of multiobjective mathematical programs with equilibrium constraints in healthcare
management [26] and determining energy and climate market policy [27]. Dual-
ity plays an important role in finding the lower bound of objective functions, thus
application point of view duality have great importance. Duality of multiobjective
programming problems has been given by several authors (see, [28, 29, 30, 14]).

In Sect. 2, we recall some preliminary results and definitions which will be used
throughout the paper. In Sect. 3, we establish necessary and sufficient optimality
conditions, formulate Mond-Weir type dual models and establish duality results. We

also illustrate duality results under suitable examples.
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2. Preliminaries

In this section, we recall some basic definitions and results which will be used
throughout the paper. Inequalities between two vectors y, z € R”, follow the follow-

ing conventions:

Yy é Z‘(:;’y;'éZj;i:lj---?n,
y £ z<=y=z and y#z,
y < z4&=yi<z,i=1,..,n.

Let S denotes the feasible region of the PMMPEC (1.1) is given as:
S={z€ R :4(z) S0, h(z) =0, G(z) 2 0,H(2) 2 0, G(z)" H(z) = 0}.

Let z* denotes the feasible point of the PMMPEC (1.1). For further discussion we

need to define index sets as follows:
a(z") = {i: Gi(Z*) =0, B(z") >0}, y(z*) = {i: Gi{(Z") >0, Hi{z") =0},
B(z*) ={i: Gi(z") = 0,H;(z") =0}, Iy = {1,2,..., p},
Bl ={ic@lz®) =0} L={L2, ...} Hhi={1,2,..,¥%},
Lil(e®) = {i: e} = 0% L= {1,2,....0} \ {i{}-

Definition 2.1. [32] A feasible point z* is said to be an efficient solution of the PMM-

PEC(1.1), if there is no other feasible point z, such that
JFlz) = Jz").
Definition 2.2. [25] Let f : § C R" — R be a differentiable function on an open
convex set . The function f is said to be
(1) Pseudoconvex at z* € S, if Vz € S,
(V£ )z—2) 2 0= flz) 2 £(2"),
(2) Pseudoconcave at z* € §,if Vz € S,

(Vf(z*),z—2*) £0= f(2) £ f(2*),
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The function is said to be pseudoconvex (pseudoconcave) on § if it is pseudoconvex
(pseudoconcave) at every z € S. Moreover, the function is said to be pseudolinear on
S if it is both pseudoconvex and pseudoconccve on S.

More precisely, a differentiable function f : § — R on an open convex subset § C

R", is said to be pseudolinear if Vz;,z, € S, one has

(Vf(z1),z2—21) 2 0= f(z2) = f(21),
and
(Vf(z1),2—21) £ 0= f(22) = f(21).

The following characterization of psudolinear function given by Chew and Choo

[23], which is very useful in the derivation of further results.

Theorem 2.1. Let f: S CR" — R be an open convex set. Then, f is a differentiable
pseudolinear function on S if and only if ¥ z1, 7o € S there exists a function p: S X § —

R, where R, denotes positive real number, such that

f(z2) = f(z1) + p(21,22)(V f(21),22 — 21).-

The function p is called proportional function.

3. Necessary and Sufficient Optimality Conditions

Motivated by strong Pareto S-stationary point of Zhang et al. [21], we define
strong efficient S-stationary point for pseudolinear multiobjective mathematical pro-

grams with equilibrium constraints (1.1) as follows.

Definition 3.1. A feasible point z* is called strong efficient S-stationary point of
the PMMPEC (1.1) if there exist multipliers (A/,A8, A", 19, A#) € R x RY x R" x

R™ x R™ satisfying the following conditions

m

):Afo, +Z?Lgvg, +Z),""Vh )’f CVGi(z) - Y A'VH (") =0,

i=1 i=1
lf>Qlf§Qg&)”ﬁ:0Jf: 0 (i€ y(z)), A =0 (i € a(z"),
0 (

A =0 (ica(z), A 20(@eyz)), AC=0, AH >0 (icB(z)).
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In the following result, we present relationship between strong efficient S-stationary
point and efficient solution of pseudolinear multiobjective mathematical programs

with equilibrium constraints

Theorem 3.1. A feasible point 7* is an efficient solution of PMMPEC(1.1) if and only
if 7% is an strong efficient S-stationary point of PMMPEC(1.1)

Proof. Let z* be a strong efficient S-stationary point, then there exist multipliers
(A 28,2 A9 A1) € R x R x R” x R™ x R™ such that the following conditions
hold

Z/lf Vfiz Z}Lgvg, E}thwl Z)LGVG Z)LHVH (%)

A >0, 4820, g )T/ngO:/lfGZ (fev(z),A" =0(ical)),
AC20(i€a(@)), A7 20 (€yE"),A” 20, 47 20 (i€ B(z")).

0,

Assume z" is not an efficient solution. Then, there exist a feasible point z ## z* such
that fi(z) = fi(z*) for all i except at least one k such that f;(z) < fx(z*). Now, from

pseudolinearity we have

fi(2) = fi(@") = pl (@ 2NV i),z =) SOVie {1, p} \ {k} (3.1)

fi@) — fil@*) = Pl ) (VAi(z*),z—7*) <0, (3.2)
8i(z) — &i(z") = i (z,2")(Vgi(z"),2—2") £0, i € I,(z"), (3.3)
hi(z) — hi(Z*) = pl (2,2 )(Vhi(2"),2—2) = 0, i € I(z"), (3.4)

—Gi(2) +Gi(z*) = pP(2,2){-VGi(N),z—2*) £0, i c a(z)UB(Z"), (3.5)

— Hi(z) + Hi(z") = pi' (2,2")(—=VH;(z"),z— ") £ 0, i € y(z") UB(*).  (3.6)

Multiplying (3.1)-3.6) by A/ >0 (i € I;), A2 2 0 (i € I,(z*)), Al (i € I(z*)), AS =

1

0(ie€yz)), A*20(iealz)uB(z)), Af=0(ieca(z)), A =z0(ieB(z)U
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¥(z*)), respectively and using the fact that each p; > 0, we get

<ZA’Vﬁ +Z}Lng, +Z}L"’Vh (%)

Y ASVG(2") Z}LHVH ), 2 z*><0,

i=1 =
which contradicts the stationarity of z* as z — z* ¢ 0. Hence the result.
Conversely, suppose z* is an efficient solution of PMMPEC(1.1), then from pseu-
dolinearity of the functions there does not exist any feasible point z different from z*

such that the following system has solution.

(Vfile*),2—2"} =0, i={1,...,p}\ {k},

(Vfi('),z—7) <0, i=k,

(Vgi(z¥),z—7") £0, i € I,(z")

(Vhi(7*),z—7") =0 (3.7)
(=VGi(z"),z2—7") =0 (i € a(z") U B(z"))
(—VHi(z");z—2") S0 (i e ¥z YU B())

That is, the inequality system (3.7) has no solution. Therefore, from Tucker theorem

[33] and setting
AN >0, iel={1,..p}, A 20, g(z)TA8 =0,A° =0 (i € (")),
M =0(ica(), AC20(i€al), A 20 (e,
A7 20,41 20(ieBz"),
we find A = (A7, A8, A", A7 10) e R x R? x R” x R™ x R™, such that
Z?LfVﬁ —i—ZAqV’g, +ZMW¢ ‘)

i=
m

—Z?LGVG ) — Z?L,-HVHf(z*):O, (3.8)

i—1 =1

Hence, we get the required result. [
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Example 3.1. Consider the problem

min(fi(z), f2(z)), where fi(z) =21 +72}, o) =22 +2
subjectto Gzl =z 20, H) =2 =2 0, G2 H(z) = ziza =0.

Since,

AV () + M V() —A°VG(z) — AVH(2)
L f 1432 [ 0 . 1 o] [o
=0 g 2o 2 [1) = ol

for A/ >0, AY > 0,49 =1/ (1+323), A = A{ (1 +323) at point z = (0,0). Hence,
point z = (0,0) is an efficient solution. Since, except point z = (0,0) no other point
satisfies above conditions (strong efficient S-stationary conditions). That is, there is

no efficient solution except z = (0,0).

= o = 8 ik h =
Remark 3.1. In Definition 3.1 if we set 1/ = 2 A8 =2 Jh=_A_ }0=
zk 21’ v A

AG A N . -

s = —+—. Then, Definition 3.1 is reformulated as:

Y A/ 3 A

i=1 i=1

P _ f q _ r mo G m. -
LAVAE) + LA Ve + LA VA(E) = LATVGH() = LA V() =0,

>0, YA =1, 4820, gz A8 =0, AT =0 (i€ 1(z")), A =0 (i € a(2")),

AF 20 (icaz)), AT20(ieyz)), A°20, A7 20 (ieB()).

This is an alternate form of strong efficient S-stationary conditions.

4. Duality

In this section, we propose Mond-Weir type dual model to a pseudolinear MM-
PEC(1.1), which is motivated by [31] and establish weak and strong duality results.

Mond-Weir type dual for pseudolinear multiobjective mathematical programs with
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equilibrium constraints (MWDPMMPEC) is formulated as follows:

max f(u) (4.1)
subject to Sywp ={(u, A, A8, A" A9 A7) : Vd(u, A/ A8, A" A¢ A7) =0,

A >0, 4520, gw)TA2 20, h(u) =0, A% >0 (i € ot(u) U B (),

G(u)'A° <0, A" 20 (i € y)UB(w)), 4 =0 (i € a(w)),

A8 =0 (i€yw), Hu) 2" <0},

where ®(u, A/, A%, A" 19 AH)

_Z;Lff, +Zl“gl u +ZM )— Y ACGi(u) - Z;LHH( ).

i=1 i=1

Consider the set,

WD_{” ( .-A'f:lg?lhalcglﬂr)ESMWD}.

Theorem 4.1. (Weak Duality) Let z be a feasible point of the PMMPEC (1.1) and
(u, AV A8, A0 A9 AH) be a feasible point of the MWDPMMPEC(4.1). If all given

functions are pseudolinear at u € SU Sy, , and any of the following holds:

(a) lf-f >0 and fi(Vi € Iy) are pseudolinear at u € SU Sy p:

; P
(b) A >0 (Viely) and Z/lifﬁ(-) is pseudolinear at u € SU Sywp-

i=1

Then,
z) % f(u). 4.2)

Proof. Assume that
f(2) < f(u),
Then,
fi(z) = fi(u), Vi€ Iy, except at least one k, such that

fi(z) < fi(u).
Multiplying by }L,:f '>0and adding, we get

(A f(z) < (AT)" f(u). (4.3)
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Using the pseudolinearity assumptions, we get

r .
(Y A/ Vfi(u),z—u) <0, (4.4)
=1
q
): Sg:(z )<Zlggz(u EAWg, W),z—u) <0, i€l (u), (4.5)
Y Ahi(z) = Y Alhi(u) = (Y A'Vhi(u),z—u) =0, i €1, (4.6)

— Y A9Gi(z) = - Y APGi(w) = (=Y. A°VGi(u),z—u) £0, ¥V i, (4.7)

— Y A'Hi(z) £ =Y A'Hi(u) = (=Y A'VHi(u),z—u) £0, Vi, (48)

by adding (4.4)-(4.8), we get

< Y AV fi(w) + ):Agvg, () + Y AV hi()

i—1 i—1

— Y A°VGi(u) - Y A'VH;(u), z— u> <0,
i=1

i=1

which contradicts the feasibility of u. Hence the theorem. [

Theorem 4.2. (Strong Duality) Let a feasible solution 7* be efficient solution of the
PMMPEC (1.1). If assumptions of weak duality Theorem 4.1 holds. Then, there exist
(AT, A8, A% A0 AH) € RE x RY x R x R™ x R™ such that (z*, A7, A8, A" A9 AH) is
an efficient solution of the MWDPMMPEC(4.1) and respective objective values are

equal.

Proof. As feasible point z* is an efficient solution of the pseudolinear MMPEC (1.1).
Then, from Theorem 3.1, there exist (A/, 18,47, 16, AH) € R x RY x R" x R x R
such that strong efficient S-stationary conditions are satisfied. That is,

-— r -—
YA/ Vi) + ): ASVgi(z) + Y AlVn(z) - ): ACVGi(z") Z}L,.HVH,_-(Z*)
i=1 i=1 i=1 i=1
Al >0, 28520, g(z)TA$ =0, A =0 (i € y(z*)), AH =0 (i € a(z*)), AC =

C>0(ica(z), A 20 (i y(z*)). Since z* is feasible

0.
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point then h;(z*) =0 (i € I), (A9)TG(z*) =0, and (A")TH(z*) = 0. Therefore,
(25, A, A8, A" LG A1) is feasible of the MWDPMMPEC(4.1). Then, from feasibil-
ity and weak duality Theorem 4.1, we have

f(@*) 2 f(u),

for any feasible solution (1, A/, 18, A" A6 AH) e R" x RY x RL x R""" of pseudo-
linear MWDPMMPEC (4.1). Hence (z*,Af,A%,A", 19, 1#) is an efficient solution
of MWDPMMPEC(4.1) and their respective values are equal. ]

Following example illustrate the Theorem 4.1 and Theorem 4.2.

Example 4.1. Consider the following PMMPEC problem:
min f(z) = (f1(z), f2(z)), where fi(z) = z1 +22, f2(z) =2+ 2,
subject to G(z) =21 =0, H(z) =22 =0, G(z2)"H(z) = 2122 =0, z € R%.

Feasible region for PMMPEC is S = {(z1,22) € R?:21 20, 20 = 0, 7122 = 0}. Now,
we formulate MWDPMMPEC dual model according as above discussion.

max f(u) = (uy +ua, up +u3), u € R?,
subject to A/ V fi(u) + AV fo(u) — A°VG(u) — A'VH (u)
- 1]y g =27 o) 2 1] = o
A >0, 0 >0,1920, A" >0, A9G(u) = A% £0,
AP H () = A" 0.
Solving above, we get
AT =2+ A (143u3) >0, =24/ >0 = u; <0, u, 0.

It is clear from the feasibility

f@) £ f(u).
Hence the weak duality Theorem 4.1 is verified. Now, at point z* = (0, 0) strong

duality Theorem 4.2 can be easily verified.
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Conclusions

Kruk and Wolkowicz [34] concluded from Mathis and Mathis [35], that the hospi-
tal management problem described by Mathis and Mathis [35] comes under the class
of linear constrained pseudolinear optimization problems. The paper of Kruk and
Wolkowicz justifies the importance of the class of pseudolinear functions and related
programming problems. Since in this paper, we have considered the pseudolinear
multiobjective mathematical programs with equilibrium constraints and established
necessary and sufficient optimality conditions without any constraint qualifications,
proposed Mond-Weir type dual models for pseudolinear multiobjective mathemati-
cal programs with equilibrium constraints and established weak and strong duality
results with suitable examples. Therefore, application point of view study of pseudo-
linear multiobjective mathematical programs with equilibrium constraints is useful.
Wolfe dual model can be formulated also by taking motivation from [33]. Since
wolfe duality results required convexity assumptions, but here all used functions are
pseudolinear, which is bigger class. We tried to establish Wolfe duality results, but

pseudolinearity arises issues during the proof of weak and strong duality theorems.
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