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Abstract. In this paper we investigate the significant role of higher-order parametric duality
models for a discrete minmax fractional programming problem regarding higher-order neces-
sary and sufficient optimality conditions. Several higher-order duality models are formulated
and investigated along with weak, strong, and strict converse duality theorems by applying
some new classes of higher-order invex functions. To the best of our knowledge, the obtained
results are new and have a wide range of applications to other parametric duality models,
including interdisciplinary research in nature.
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1. INTRODUCTION

Here in this paper, we introduce and formulate a number of higher-order/generalized
second-order parametric duality models and establish some duality models for the

following discrete minmax fractional programming problem:

(P) Minimize max fix)
1<i<p gi(x)
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subjectto  Gj(x) <0, je€g, Hy(x)=0,ker, xeX,

where X is an open convex subset of R" (n-dimensional Euclidean space), f;, gi, 1 €
p= {1:2;056: 0} Gjs ] € q, and Hy, k € r, are real-valued functions defined on X,
and for each i € p, g;(x) > 0 for all x satisfying the constraints of (P).

As the invexity function theory has been generalized and investigated mostly re-
lated to mathematical programming and its applications in several publications, in-
cluding [19, 33, 34, 37, 45, 46, 56, 74, 75, 76, 78, 79, 80, 81, 83, 84, 86], mostly
concentrated to the minmax fractional programming, where some new classes of gen-
eralized second-order invex functions are defined, a set of second-order necessary
optimality conditions is established, and numerous sets of second-order sufficient
optimality conditions are discussed using various generalized second order invexity
assumptions. In this paper, we intend to introduce and investigate new classes of gen-
eralized second-order invex functions (referred to as sonvex functions), to formulate
a set of second-order necessary optimality conditions, and numerous sets of second-
order sufficient optimality conditions using various generalized (¢,n,®,p,0,m)-
sonvexity assumptions. Furthermore, we construct four second-order parametric du-
ality models and prove a class of weak, strong, and strict converse duality theorems
utilizing various (¢,n,®,p,0,m)-sonvexity hypotheses. The paper is organized as
follows: In Section 2, we introduce a class of basic definitions and auxiliary results
that will be used for the problem on hand. Section 3 deals with two second-order
parametric duality models for (P) with relatively simple constraint structures and
proving weak, strong, and strict converse duality theorems using various generalized
second-order (¢, 7, ®,p, 6, m)-invexity assumptions. In Section 4, we formulate an-
other pair of second-order parametric duality models with more flexible constraint
structures that allow for a greater variety of conditions under which duality can be
achieved, and we discuss a multitude of second-order duality results under a great

variety of generalized second-order (¢, 1, ®,p, 68, m)-invexity conditions. Section 5
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is concerned with concluding remarks, especially a future vision for our main results
in the sense of further research opportunities arising from certain modifications of the
principal minmax model investigated in the present work.

It seems that all the duality results obtained for (P) are also applicable, when ap-
propriately specialized, to discrete max, fractional, and conventional objective func-

tions, which are particular cases of (P):

2. PRELIMINARIES

In this section we introduce the generalized concept of (¢,n,w,p,0,m)-invex
functions (which are referred to as sonvex functions). Let f : X — R be a twice dif-

ferentiable function.

Definition 2.1. The function f is said to be (strictly) (¢,n,®,p,0,m)-sonvex at x* if
there exist functions 9 R —-R, n,0: XXX —->R" p: X xX >R, and0:X xX —

R", and a positive integer m such that for each x € X (x # x*) and z € R",

1

0 (F(0)—F())(>) 2 3 (VFG), M) + 5 (0(x,), VA ()e) + 5 (VF(),2)

B |

+p (x,x7) [0 (x, x7) [,

where || - || is a norm on R".

The function f is said to be (strictly) (¢,n,®,p,0,m)-sonvex on X if it is (strictly)
(¢p,n,w,p,0,m)-sonvex at each x* € X.

Definition 2.2. The function f is said to be (strictly) (¢, 1, @, p, 8, m)-pseudosonvex
at x* if there exist functions ¢ :R - R, n,o: X xX - R", p: X xX = R, and
0 : X x X — R", and a positive integer m such that for each x € X (x # x*) and z € R",
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S (VA6 2)) + 5 (0(x7), V2 ()2)
VI, 2 —p () 602"

= ¢(f(x) = f(x"))(>) = 0.
The function f is said to be (strictly) (¢,n,®,p,0,m)-pseudosonvex on X if it is
(strictly)

(0.m,w,p,0,m)-pseudosonvex at each x* € X.

Definition 2.3. The function f is said to be (prestrictly) (¢,mn, ®, p, 8, m)-quasisonvex
at x* if there exist functions ¢ :R - R, n,0o: X xX - R", p: X xX = R, and
0 : X x X — R", and a positive integer m such that for each x € X and z € R",

S _p(x:X*)||9(x:X*)|lin'

The function f is said to be (prestrictly) (¢,n,®,p, 0, m)-quasisonvex on X if it is
(prestrictly) (¢,n,®,p,0,m)-quasisonvex at each x* € X.

From the above definitions it is clear that if f is (¢,n,®,p,0,m)-sonvex at x*,
then it is both (¢,n,®,p,0,m)-pseudosonvex and (¢, 1, w,p, 6,m)-quasisonvex at
x5, if fis (¢,m,m,p,0,m)-quasisonvex at x*, then it is prestrictly (¢,n,®,p, 0,m)-
quasisonvex at x*, and if f is strictly (¢,n, @, p,0,m)-pseudosonvex at x*, then it is

(¢,n,®,p,0,m)-quasisonvex at x*.
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In the proofs of the duality theorems, sometimes it may be more convenient to
use certain alternative but equivalent forms of the above definitions. These are ob-
tained by considering the contrapositive statements. For example, (¢,7n,®,p,0,m)-

quasisonvexity can be defined in the following equivalent way:

The tunction f is said to be (¢,n,®,p,0,m)-quasisonvex at x* if there exist func-
tions ) . R—-R, nNo: XXX —>R" p: XxX >R and : X xX - R", and a

positive integer m such that for each x € X and z € R",

3 (VA0 + 5 (@00 VA (W)3) +

(Vi) > —p(xex")]|60x,x") ™

1
2
)— f(x")) > 0.

= ¢(f(x
We observe that the new classes of generalized convex functions specified in Def-

initions 2.1 - 2.3 contain a variety of special cases that can easily be identified by

appropriate choices of ¢, 1, o, p, 0, and m.

We next recall a set of second-order necessary optimality conditions for (P). This

result will be needed for proving strong and strict converse duality theorems.

Theorem 2.1. [80] Let x* be an optimal solution of (P), let A* = ¢(x*) =
max <<, fi(x*)/gi(x")}, and assume that the functions f;, g;, i € p, G, j € q, and
Hy, k € r, are twice continuously differentiable at x*, and that the second-order Guig-

nard constraint qualification holds at x*. Then for each 7* € C(x"), there exist

4
u*EUz{uERp:uEO,Zu,-zl},

i=1

v eRT ={veR7:v >0}, andw* € R" such that
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P
Y V(") — A Vgi(x* ]—I—EV*VG +):szHk( ) =0,
i=1 J= k=1

P r
<z*, { Y ul[VAfi(x') = AV 2gi(x")] + Z ViVeGi(x)+ ) WEVsz(x*)}z*> >0,
i=1 k=1

W) — Agi(x)] =0, i€ p.

viG;(x") =0, jeg,

where C(x*) is the set of all critical directions of (P) at x*, that is,

C(x")={zeR": (Vfi(x")—AVgi(x"),2) =0, i€ A(x"), (VG;(x"),z) <0, jeB(x"),
(VH (x"),z) =0, ker},

AW) = (€ p: /() /(") = max fi(x")/ilx")}, and B(x") = {j €
Gj(x*):()}.

For brevity, we shall henceforth refer to x* as a normal optimal solution of (P) if it is

an optimal solution and satisfies the second-order Guignard constraint qualification.

In the remainder of this paper, we shall assume that the functions f;, g;,i € p, Gj, j €
g, and Hy, k € r, are twice continuously differentiable on the open set X. Moreover,
we shall assume, without loss of generality, that g;(x) >0, i € p, and ¢(x) > 0 for all
xeX.

3. DUALITY MODEL I

In this section, we consider two duality models with relatively simple constraint

structures and prove weak, strong, and strict converse duality theorems.
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Consider the following two problems:

(DI) Maximize A

subject to

Y wlVA() ~ AVg()]+ Y viVG,0)+ ¥ wiVH(y) = 0,
i=1 =1 k=1

<z, { iui[vzﬁ(y) —AVigi(y)]+ Zq', viV2Gi(y) + Xr‘, wieV2H(y) }Z) = 1,

j=1 k=1

fily) —Agi(y +ZVJ )—I—Zwka(y)EO, i€ p,
k=1

yeX,zeC(y),ueU,veRi, weR", A eRy;

(DI) Maximize A
subject to (3.2) - (3.4) and

63

3.1

3.2)

(3.3

(3.4)

P
<Z Vfi(y)—AVgi(y —I—Zv VG( +EWkVHk y),n(x7y)> >0 forallxeF,

where n is a function from X x X to R".

(3.5

Comparing (DI) and (DI), we see that (DI) is relatively more general than (DI) in

the sense that any feasible solution of (DI) is also feasible for (DI), but the converse

is not necessarily true. Furthermore, we observe that (3.1) is a system of n equations,

whereas (3.5) is a single inequality. Clearly, from a computational point of view, (DI)

is preferable to (DI) because of the dependence of (3.5) on the feasible set of (P).
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Despite these apparent differences, it turns out that the statements and proofs of all
the duality theorems for (P) — (DI) and (P) — (DI) are almost identical and, there-
fore, we shall consider only the pair (P) — (DI).

For the sake of economy of space and expression, we shall use the following list of

symbols in the statements and proofs of our duality theorems:

V)= i‘, v;G(x)
j=1

Dr(x,w) = wiHi(x), k€ r,

L(uy={icep:u>0}, Jo(v)={je€q:v;>0}, Ki(w)={ker:w#0}.

In the proofs of our duality theorems, we shall make frequent use of the following

auxiliary result which provides an alternative expression for the objective function of

(P).

Lemma 3.1. [83] For each x € X,

fz(-x) tfr (x)

¢(x) = max — max
( I<i<p gi(x) ueU Zl 1”181(x)

The next two theorems show that (DI) is a dual problem for (P).



JOURNAL OF THE ORISSA MATHEMATICAL SOCIETY 65

Theorem 3.1. (Weak Duality) Let x and . = (y,z,u,v,w,A) be arbitrary feasible
solutions of (P) and (DI), respectively, and assume that either one of the following

two sets of hypotheses is satisfied:

(a) (l) foreach A4S I+ EI+(M)7 ﬁ s ((D:n?a)aﬁiv B,m)-sonvexand —&i s (¢=n7a)7ﬁi7 9:’”)_

sonvex at y,
(ii) foreach je€J =J((v), Gjis (¢,n,®,p;,0,m)-sonvex at y;
(iii) for each k € K, = K.(w), wiHy is (¢, N, ®, P, 0,m)-sonvex at y;
(iv) ¢ is superlinear and ¢(a) > 0= a > 0;

(v) Zieu uipi(x,y) + APix,y)] + Zje]+ vjﬁj(x,y) + Ykek. Pr(x,y) > 0;
(b) the Lagrangian-type function

7 q r
E— L(&,u,v,w,A) = Y wilfi(§) — Agi(&)] + Y viGi(&) + ) wiHi(§)
i=1 j=1 k=1
is (¢,n,®,p,0,m)-pseudosonvex at y, p(x,y) >0, and ¢(a) >0=-a > 0.

Then @(x) > A.

Proof. Using the hypotheses specified in (i) - (iii), we have

6(F()~ £0)) > 3{VA) M0 + 5(0(0), V2H0))

1
2

(VSi(y),2) +pi(x,y)[|0(x, )|, i €1y, (3.0)

D[ —

+

1

0(—gi(x)+8i(y) = =(-Vai(y),n(xy)) — S{o@), V2gi(y)z)

b =

1
+§<—ng(y),z) —I—ﬁ,(x,y)HQ(x,y)Hm, RS [+: (37)
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0(G1(x) ~Gy)) = 5 (V6,001 2)) + 5 (0(.3), °G,()) + 5 (V6,0).2)

(W]

+p; ()10, )", je sy, (3.8)

0 (HLlx) — Hi(0)) = 5 (VG 0(x3) + 5(0(6.), VH()2)

1
4
Now, multiplying (3.6) by %; and then summing over i € p, (3.7) by Au; and then

+=(VH(y),z), k € K. (3.9)

summing i € p, (3.8) by v; and then summing over j € g, summing (3.9) over k € r,
adding the resulting inequalities, using the superlinearity of ¢, and setting u; =0, i ¢

I..v;i=0, j¢J., and wy =0, k ¢ K, we obtain

r

(iu, 2]+ L6+ Eowere) — { L ul)—Asi0)+

l:l :l :

)+ Z wiHy (y }) > 5( Zul [V/i(y) = AVei(y)] + 2 viVGi(y)+

- j=1

l\JI'—'
.

Il MQ

230, { L ulV20) - AV 0)] + Y, 96,0)
i=1

j=1

+Y wkﬁku,y)}ne(x,y)um.

keK,
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Because of the dual feasibility of ., (3.1), (3.2), and (v), the above inequality

becomes

P
o (X wlfilx) = Agix)] + Zv,,
i=1

+ Y wiH(x) — { ;”i[fi(y) —Agi(y)]+ i’lijj(y) -l—kZi:I wka(y)}) > ().

=1
But ¢(a) > 0= a > 0, and hence

p
Z —Agi(x —I—ZVJ

-O-Zwka(x)—{Zu,-[f,-( ﬂ.g, —|-ZV G -I-ZWka )} > 0.
k=1 i=1

In view of the primal feasibility of x and (3.3), this inequality further reduces to

):m fi(x) — Agi(x)] > 0. (3.10)

Now using (3.10) and Lemma 3.1, we obtain the weak duality inequality as fol-

lows:

p L W
() = may TG0 T w0
a€l Zl 1 a;gi(x) ~ i uigi(x)
(b): Using the dual feasibility of .#, nonnegativity of p(x,y), (3.1), and (3.2), we

Vv

obtain the following inequality:

1 1
(VL(y,u,v,w,?L), n(xvy)> + E(w(xay)a VZL(yaqu& W,A.)Z> + E(VL(y,u,v, Wak)vz>

0| =

>0 = —p(x,y)HB(x,y)Hm,

which in view of our (¢,n, ®, p, 6,m)-pseudosonvexity assumption implies that
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¢(L(x,u,v,w,l) —L(y,u,v,w,l)) >0
Since ¢(a) > 0 = a > 0, we have
L(x,u,v,w,A) — L(y,u,v,w,A) >0

Because x € IF, v > 0, and (3.3) holds, we get

Z”rfr —Agi( )]—Ov

which is precisely (3.10). As seen in the proof of part (a), this inequality leads to
the desired conclusion that @(x) > A. W

Theorem 3.2. (Strong Duality) Let x* be a normal optimal solution of (P), let A* =
©(x*), and assume that either one of the two sets of conditions specified in Theorem
3.1 is satisfied for all feasible solutions of (DI). Then for each z* € C(x*), there exist
u* €U, v € RY, and w* € R" such that .* = (x*,z*,u*,v*,w*,A*) is an optimal
solution of (DI) and @(x*) = A™.

Proof. Since x* is a normal optimal solution of (P), by Theorem 2.1, for each z* €
C(x*), there exist u*, v*,w*, and A" (= ¢@(x*)), as specified above, such that .* is a
feasible solution of (DI ). If * were not optimal then there would exist a feasible

~ A~ A e s

Therefore, y *1s an optlmal solution of (DI). 0

We also have the following converse duality result for (P) and (DI).

Theorem 3.3. (Strict Converse Duality) Let x* be a normal optimal solution of (P),
let ./ = (%,Z, 1, i, v, W) be an optimal solution of (DI), and assume that either one of

the following two sets of hypotheses is satisfied:

(a) The assumptions of part (a) of Theorem 3.1 are satisfied for the feasible solu-
tion .7 of (DI), ¢(a) > 0= a >0, and f; is strictly (¢, 1, @, p;, 0, m)-sonvex
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at X for at least one index i € 1, (it), or —g; is strictly (¢, n,m,p;,0,m)-
sonvex at % for at least one index i € I..(ii) (and A > 0), or G; is strictly
(0,1, ,p;,0,m)-sonvex at X for at least one index j € J(V), or Di(-,W)
is strictly (¢,n, P, 0,m)-sonvex at X for at least one index k € K.(W), or
Yier, () ilPi(x*, %) + APi(x*, %)) + Ljes, (7) 73 (8", %) + Lkex, (w) P (", %) >
0.

(b) The Lagrangian-type function { — L({ i, V,w ) is strictly (¢,m,w,p,0,m)-
pseudosonvex at X, p(x*,%) >0, and ¢(a) > 0= a > 0.

Then % = x*, that is, % is an optimal solution of (P), and @(x*) = A.

Proof. (a): Since x* is a normal optimal solution of (P), by Theorem 2.1, there exist
FeR, u €U, v eRYE, w* eR", and A*(= @(x*)) such that .* = (x*, 2", u*,v*, w*, 1)
is an optimal solution of (DI) and ¢(x*) = A*. Suppose to the contrary that ¥ # x*.
Now proceeding as in the proof of Theorem 3.1 (with x replaced by x* and .# by .%)

and using any of the conditions set forth above, we arrive at the strict inequality

Zp’ii [fi(x™)—Agi(x*)] > 0.

Now using this inequality in conjunction with Lemma 3.1, as in the proof of part
(a) of Theorem 3.1, we arrive at the strict inequality ¢(x*) > A which contradicts the
fact that @(x*) = A* = A. Therefore, we conclude that £ = x* and @ (x*) = A.

(b): The proof is similar to that of part (a). ]

4. DUALITY MODEL II

In this section, we consider another pair of duality models for (P) with more flexi-
ble constraint structures which allow for a greater variety of generalized (¢,n,®,p,0,m)-

sonvexity hypotheses under which duality can be established.

Consider the following two problems:
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(DIT) Maximize A

subject to

p
Y wiVfi(y)—AVg; y)]+ZvJVG +ZkaHk (v) =0, (4.1)
i=1 J= k=1

(z {)p: V2 £y xvzgf(y)]+)q:vjszj(y)+)r:ka2Hk(y)}z> >0, (4.2)
= k=1

j=1
wi(fi(y) — Agi(y)] =0, i € p, (4.3)
viGi(y) >0, jeg, (4.4)
wiHi(y) >0, k€, 4.5)
yEX,z€C(y),ueU,veRl, weR" A eRy; (4.6)

(DIT) Maximize A
subject to (3.5) and (4.2) - (4.6).

The remarks made earlier about the relationships between (DI) and (DI) are, of
course, also valid for (DII) and (DII).
The next two theorems show that (DI7) is a dual problem for (P).

Theorem 4.1. (Weak Duality) Let x and . = (y,z,u,v,w,A) be arbitrary feasible
solutions of (P) and (DII), respectively, and assume that any one of the following five
sets of hypotheses is satisfied:

(a) (1) foreach i EI+ EI—F(”)? ﬁ s ((ﬁ:n?w7ﬁia G,m)—sonvexand —&i is (qﬁanawap‘ia eam)_
sonvex at v, ¢ is superlinear, and ¢ (a) > 0= a > 0;
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(ii) for each j € J.(v) =J., Gjis (¢;,7, m,p;, 0,m)-quasisonvex at y, ¢
is increasing, and ¢;(0) = 0;
(iii) for each k € K,(w) = K., & — Zi(-,w) is (@, M, Pr, 0, m)-quasisonvex
aty, @ is increasing, and ¢ (0) = 0;
(V) 9" (5,9) + Eer, viBi(5:9) + Euck. Pilx,3) = 0, where p* (x,) =
Yier, uilPi(x,y) +Api(x,y);
(b) (i) foreachiel,, fiis(¢,n,®,p;, 0,m)-sonvex and —g; is (¢, N, ®,p;, 0,m)-
sonvex at y, ¢ is superlinear, and ¢(a) > 0=a > 0;
(i) £ = F(E,v)is (,n,@,p,0,m)-quasisonvex at y, ¢ is increasing, and
0(0)=0;
(iii) for each k € K., € = D (E,w) is (§, M, Pr, 0,m)-quasisonvex at y, @
is increasing, and ¢p(0) = 0;
(iv) p*(x,y) + P (x,y) + Lrek, Pr(x,y) 2 0;
(c) () foreachicl,, fiis (¢,n,®,p;,0,m)-sonvex and —g; is (¢,n, ®,p;, 0, m)-
sonvex at y, ¢ is superlinear, and ¢(a) > 0= a > 0;
(ii) for each j € Jy, G;is (§;,n,®,@,p;,0,m)-quasisonvex at y, §; is in-
creasing, and ¢;(0) = 0;
(iii) & — 2(E,w)is (9,n,,p,0,m)-quasisonvex at y, ¢ is increasing, and
6(0)=0;
(iv) p*(x,y) +Xjer, viPj(x,y) +P(x,y) = 0;
(d) (i) foreachicl,, fiis (¢.n,®,p;,0,m)-sonvex and —g;is (¢.n, @, p;, 0,m)-
sonvex at y, ¢ is superlinear, and ¢(a) > 0= a > 0;
(i) E = F(Ev)is (.n,@,p,0,m)-quasisonvex at y, ¢ is increasing, and
6(0) =0;
(iii) & — 2(&,w) is (,n,®,P,0,m)-quasisonvex at y, @ is increasing, and

9(0) =0;
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(iv) p*(x,y) +P(x,y) +p(x,y) = 0;
(e) (i) foreachicl., fiis (¢.n,®,p;,0,m)-sonvex and —g; is (¢, M, ®, p;,0,m)-
sonvex at y, ¢ is superlinear, and ¢(a) > 0= a > 0;
(i) & = G (E,v,w) is (.1, ®,p,0,m)-quasisonvex at y,
and $(0) =
(i) p*(x,y) +p(x,y) = 0.

~

¢ is increasing,

Then @(x) > A.

Proof. (a): In view of the assumptions in (i), (3.6) and (3.7) hold. Combining these

inequalities, we get

=

1 P
al i)~ Aei2)] = Rl )= Agi00)]) = 5 (Ll i) ~AV8i0): ) )+

M‘c

a8 )

1 . 2
<a)xy ):u, (V2 fily) Wzgf(y)]z>+%<guf[Vﬁ( ) = AVai(y), >

+ ) wilpi(x,y) + APy [0y, 4.7)

~.

0| =

Since x € F and (4.4) holds, it follows from the properties of the functions ¢ ; that for

each j € J;, §;(G;(x) — G;(y)) < 0 which in view of (ii) implies that

(VG,(3),1(5.3)) + 5 (003). V2G,0)2) + 5 (VG5 (0),2)

AN R

P 6y)|"

Asv; > 0foreach j € gand v; = 0 for each j € ¢g\J; (complement of J, relative

to g), the above inequalities yield
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%(ivjVGj(y),n(x,y)>+;< o(x,y), ZVJVZ > <ZVJVG >

J=1 J=

<= Y vipi(x,y)0xy)|" (4.8)

Jjel+

In a similar manner, we can show that (iii) leads to the following inequality:

%<;WkVHk(Y)= n (x,y)> + %(w(x,y),]; kasz(y)Z> + %<’;WkVHk(y)vZ>

<— Y wibr(x,y)[[0(x, )" (4.9)
keK.

Using (4.1), (4.2), and (4.7) - (4.9), we see that

8L ulfitx) —Agilx ]—Zmﬁ ~28i(»)])
>[5y v w>> 3 (06, Zv76,00¢) + 3 X mv6100.)

J: :1

o Epnrnten) + {0, £ mesiie)] 5 £ v o)

Y wilpi(x,y) + Apix, )16 (x, )™

IEL

s { Y wilpi(x,y) + Api(x, )]+ Y vipi(x,y) + Y wkﬁk(x,y)}llﬂ(x,y)l\m (4.10)

= = kek,

=0 (by (iv))

~,

But ¢ (a) > 0 = a > 0, and hence we have

immurw&unzimmorwﬁwnzm

where the second inequality follows from the dual feasibility of . and (4.3). As
shown in the proof of part (a) of Theorem 3.1, this inequality leads to the conclusion
that @(x) > A.
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(b) : As shown in part (a), for each j € J., we have G;(x) — G;(y) <0, and hence

using the properties of the function ¢, we get

‘73( _);VJG;'(X) - _);vjcj(y)) <0

which in view of (i1) implies that

=
)16 (x,y)[|". 4.11)

Now proceeding as in the proof of part (a) and using this inequality instead of

<Z: xv)>+;< w(x,y), ZVJ,VZ y)z> <ZVVG >
—p(x,

2
<

(4.8), we arrive at (3.10), which leads to the desired conclusion that ¢(x) > A.
(c) - (e) : The proofs are similar to those of parts (a) and (b). L]

Theorem 4.2. (Strong Duality) Let x* be a normal optimal solution of (P) and assume
that any one of the five sets of conditions specified in Theorem 4.1 is satisfied for
all feasible solutions of (DII). Then for each 7* € C(x*), there exist u* € U, v* €
R%, w* € R", and A*(= @(x*)) € Ry such that &* = (x*,z*,u* v, w*,A*) is an
optimal solution of (DII) and @(x*) = A*.

Proof. The proof is similar to that of Theorem 3.2. []

Theorem 4.3. (Strict Converse Duality) Let x* be a normal optimal solution of (P),
let . = (%, Z,ﬁt, ii,v,w) be an optimal solution of (DII), and assume that any one of

the following five sets of hypotheses is satisfied:

(a) The assumptions of part (a) of Theorem 4.1 are satisfied for the feasible solu-
tion .7 of (DII), §(a) >0=>a >0, and f; is strictly (¢, 1, ®, p;, 8,m)-sonvex
at X for at least one index i € 1. (ii), or —g; is strictly (¢,n,®,p;,0,m)-
sonvex at X for at least one index i € 1.(i1) (and A >0), or Gj is strictly
(0;,1,@,p;,0,m)-pseudosonvex at % for at least one j € J,(V), or & —

D(E,W) is strictly (§p, M, @, Py, 0,m)-pseudosonvex at ¥ for at least one
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k€ K (W), or p*(x*,%) + L ey, ) 7P (x", X) + ek, (7) Pr(x*, %) > 0, where
P (x*, %) = Licr, (@) Wil Pi (", X) + A (x*, %)].

(b) The assumptions of part (b) of Theorem 4.1 are satisfied for the feasible solu-
tion . of (DII), (a) > 0= a >0, and f; is strictly (¢, 1, ®, p;, 0,m)-sonvex
at X for at least one index i € 1, (i), or —g; is strictly (¢,m,@,p;,0,m)-
sonvex at % for at least one index i € 1. (ii) (and A > 0), or & — €(E,V)
is strictly (¢,n,®,p,0,m)-pseudosonvex at %, or & — (€. W) is strictly
(O, M, @, Py, 8,m)-pseudosonvex at % for at least one k € K.(W), or p*(x*, %) +
P (x*, %) + Lkek. (%) Pr(x", X) > 0.

(c) The assumptions of part (c) of Theorem 4.1 are satisfied for the feasible solu-
tion . of (DII), §(a) >0=>a >0, and f; is strictly (§, 1, ®, p;, 0,m)-sonvex
at X for at least one index i € 1..(ii), or —g; is strictly (¢,m,®,p;,0,m)-
sonvex at X for at least one index i € 1.(it) (and A >0), or G is strictly
(gﬁ,-,n,a),ﬁj,B,m)mpseudosonvex at % for at least one j € J. (¥), or & —
D (&, W) is stricily (§,1, ®,p, 0,m)-pseudosonvex at %, or p*(x*, %)+ ¥ jes, () VP (x", %) +
p(x*,x) > 0.

(d) The assumptions of part (d) of Theorem 4.1 are satisfied for the feasible solu-
tion . of (DII), §(a) >0=a >0, and f; is strictly (§,1, ®, p;, 0,m)-sonvex
at X for at least one index i € 1,.(ii), or —g; is strictly (§,m,®,p;,0,m)-
sonvex at % for at least one index i € I.(ii) (and A > 0), or & — €(E,V)
is strictly (¢,n,®,p,0,m)-pseudosonvex at %, or & — D(E,W) is strictly
(0,1, ®,p,0,m)-pseudosonvex at %, or p*(x*,%) + p(x*, %) + p(x*,%) > 0.

(e) The assumptions of part (e) of Theorem 4.1 are satisfied for the feasible solu-
tion . of (DII), 0(a) >0=a>0,and f; is strictly (¢, 1, @, p;, 6,m)-sonvex
at X for at least one index i € L(it), or —g; is strictly (¢, 1, ®, p;, 0,m)-sonvex
at % for at least one index i € I_(ii) (and A > 0), or & — G (E,5,W) is strictly
(6,1, ,p,0,m)-pseudosonvex at %, or p*(x*, %) + p(x*,%) > 0.

Then & = x* and @(x*) = A.
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Proof. The proof is similar to that of Theorem 3.3. []

In Theorem 4.1, separate (¢,n,®,p,0,m)-sonvexity assumptions were imposed
on the functions f; and —g;, i € .. It is possible to establish a great variety of ad-
ditional duality results in which various generalized (¢,n,®, p, 8, m)-sonvexity re-
quirements are placed on certain combinations of these functions. In the remainder
of this paper, we shall discuss a series of duality theorems in which appropriate gen-
eralized (¢,n,®,®,p, 0, m)-sonvexity assumptions will be imposed on the functions
& BEA), i€p, &~ EEA), G j€q & ECE ), E = DlEw), ke
r, & = P(&,w),and & — G (E,v,w).

Theorem 4.4. (Weak Duality) Let x and . = (y,z,u,v,w,A) be arbitrary feasible
solutions of (P) and (DII), respectively, and assume that any one of the following five

sets of hypotheses is satisfied:

(@ () &E—=&(E,u,A)is(¢,n,,p,0,m)-pseudosonvex at y, and ¢(a) >0 =
a>0;
(ii) for each je€ J, =J(v), Gjis (qﬁjm,w,ﬁj, 0, m)-quasisonvex at y, qﬁj is
increasing, and §;(0) = 0;
(iii) foreachk € K, =K(w), & = Z(E,w) is (¢, M, @, Pr, 0, m)-quasisonvex
aty, O is increasing, and ¢(0) = 0;
(iv) p(x,y) +Yjes. viPj(x,¥) + Xiek. Pr(x,y) = 0;
by () &€= &, u,A)is (¢,n,0,p,0,m)-pseudosonvex at y, and ¢(a) > 0 =
a>0;
(i) € = € (E,v) is (§,1m,w,p,0,m)-quasisonvex at y, ¢ is increasing, and
6(0)=0;
(iii) foreachk € Ky, & — Di(E,w) is (¢, M, @, P, 0. m)-quasisonvex at y, ¢

is increasing, and ¢x(0) = 0;
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(iv) p(x,)+P(x,) + Ekex, Prlx,y) = 0;
© (1) &E—EE,u,)is (0,n,0,p,0,m)-pseudosonvex at y, and ¢(a) >0 =
a>0;
(ii) foreach j€J., G;is (Qn,M,®,p;,0,m)-quasisonvex aty, §; is increas-
ing, and $;(0) = 0;
(iii) &€ — 2(E,w)is (¢,1,®,p,0,m)-quasisonvex at y, ¢ is increasing, and
6(0)=0;
(v) p(x,y) +Ljes, viPj(x,y) +p(x,y) 2 0;
d) () &E— & u,A)is (¢p,n,0,p,0,m)-pseudosonvex at y, and ¢ (a) > 0 =

a>0;

(i) &E =€ (E,v)is ((,5 n,w,p,0,m)-quasisonvex at y, @ is increasing, and

A

¢(0) =0;
(iii) & — 2(E,w) is (¢, n, @, P, 0,m)-quasisonvex at y, § is increasing, and
6(0)=0;

(iv) p(x,y)+p(x,x*)+p(x,y) > 0;

e) () &E—&(&,u,A)is (0,n,w,p,0,m)-pseudosonvex aty, and §(a) > 0 =
a>0;

~

(ii) &€ = G(E,v,w) is (§,n,,p,0,m)-quasisonvex at y, ¢ is increasing,
and ¢ (0) = 0;

(iii) p(x,y)+p(x,y) = 0.

Then @(x) > A.

Proof. (a): In view of our assumptions specified in (i1) and (iii), (4.8) and (4.9) remain

valid for the present case. From (4.1), (4.2), (4.8), (4.9), and (iv) we deduce that
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S

1 /¢ 1

§< Y wlV£i(y) - ng(y)],n(x,y)> + §<"’()‘=3’)’ .

1<
2

> [i(quv.fVGj<y>,n<x,y>>+§<w(xay)a Zl Y6 (0)e) +

%( ): WkVHk(y),n(xayD

k=1

wlV2 ()~ AV2gi(3)]2)

1

wlV ) = AVei()),2)

(&

h
l
AN

4 %<é VjVGj(y),z> + %<;WkVHk(y)aZ>

1

- §<w(x,y), Y wiV?Hi(y)2)| (by (4.1) and (4.2))
k=1

> [ X vibiten) + X o) [0 y)ll” (by (4.8) and (4.9)
= keK,

> —p(x,3)[8(x, )" by (iv)),
which in view of (i) implies that
¢ (& (x,u,A)—E(yu,1)) > 0.

Because of the properties of the function @, the last inequality yields

& (x,u,A) > E(yu, L) >0,

where the inequality follows from the dual feasibility of . and (4.3). As shown
in the proof of Theorem 3.1, this inequality leads to the conclusion that @(x) > A.
(b) - (e) : The proofs are similar to that of part (a). []

Theorem 4.5. (Strong Duality) Let x* be a normal optimal solution of (P) and assume
that any one of the five sets of conditions specified in Theorem 4.4 is satisfied for

all feasible solutions of (DII). Then for any 7" € C(x*), there exist u* € U, v* €
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RY, w" e R, and A*(= @(x*)) € R such that * = (x*,z",u* v, w*, %) is an
optimal solution of (DII) and @(x*) = A*.

Proof. The proof is similar to that of Theorem 3.2. []

Theorem 4.6. (Strict Converse Duality) Let x* be a normal optimal solution of (P),

let . = (%,Z,,V,w l) be an optimal solution of (DII), and assume that any one of
the five sets of hypotheses specified in Theorem 4.4 is satisfied, and that the function
E— &(E,i, L) is strictly (.1, @, P, 0,m)-pseudosonvex at & and ¢ (a) >0 = a > 0,
Then % = x* and @(x*) = A.

Proof. (a): Since x* is a normal optimal solution of (P), by Theorem 2.1, for any
7" € C(x*), there exist u* € U, v: € RY, w* € R, and A* € R, such that &* =
(x*, 2%, u*, v, w*, A%) is an optimal solution of (DII) and ¢(x*) = A*. Suppose to the
contrary that ¥ # x*. Now proceeding as in the proof of Theorem 4.4 (with x replaced

by x* and . by .¥), we arrive at the inequality
1/ & . p
(Y @[Vfi(%) — AVgi(®).n [V fi(%)
(LA - AVaiDn(.9) + < 2 Y
P
(Za IV £i(E) — AVgi(®) )
i=1

xx}w F)|"m > —p, D)6 (5|,

szgi(f)]z>

> | Y mipi,

JEJS+

wM

which in view of our strict ((}), n,m,o,p,0,m)-pseudosonvexity hypothesis implies

that

~

(6" i,A) — & (X, i, 1)) >0

Because of the properties of the function @, the last inequality yields

E(x*, i, A) > E(X,4,1) >0,
where the second inequality follows from the dual feasibility of .# and (4.3). Now,

using this inequality and invoking Lemma 3.1, we see that
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P iyt Posor (k) L
QD(X*) — max ;—lalfl('x*) % ):i,_llfzfl(x*) ~ 7L,
0l Y aigi(x*) — Yiy Higi(x")
which contradicts the fact that ¢ (x*) = A* = A. Therefore, we conclude that £ = x*
and @(x*) = 4.

(b) - (e) : The proofs are similar to that of part (a). L]

Theorem 4.7. (Weak Duality) Let x and . = (y,z,u,v,w,A) be arbitrary feasible
solutions of (P) and (DII), respectively, and assume that any one of the following five
sets of hypotheses is satisfied:

(@) () & — &(&,u,A) is prestrictly (¢,n,w,p,0,m)-quasisonvex at y, and

0(a)>0=a>0;
(ii) for each j € J, =J(v), Gjis (qﬁj, n,w,p;,0,m)-quasisonvex at y, (ﬁj
is increasing, and §;(0) = 0;
(iii) foreachk € K. =K(w), & = D (E,w),Hyis (¢, M, @, Pr, 0, m)-quasisonvex
aty, @ is increasing, and §;.(0) = 0;
(iv) p(x,y) +Ljes, viPj(x,y) + Lrek, wiPr(x,y) > 0;
(b) () & — &(&E,u,A) is prestrictly (¢,1,0,p,0,m)-quasisonvex at y, and
¢(a) >0=a>0;
(i) & = F(E,v) is (d,n,@,p,0,m)-quasisonvex at y, § is increasing, and
$(0) =0
(iii) foreachk € Ky, & — D (E,w) is (Qx, M, @, Py, O, m)-quasisonvex at y, @
is increasing, and ¢(0) = 0;
(iv) p(x,y) +P(x,¥) + Lrek, Pr(x,y) > 0;
() () & — &(&,u,A) is prestrictly (¢,1,,p,0,m)-quasisonvex at y, and

¢(a) >0=a>0;

(i1) foreach jeJy, Gjis (qu, n,o,p;,0,m)-quasisonvex at y, qu is increas-
ing, and §;(0) = 0;
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(i) & = 2(&,w) is (qﬁ, n,,p,0,m)-quasisonvex at y, ¢ is increasing, and
6(0) =0
(iv) p(x,y)+Ejes, viPj(x,y) +p(x,y) > 0;
(d) () & — &(&,u, ) is prestrictly (¢,n,®,p,0,m)-quasisonvex at y, and
d(a)>0=a>0;

(i) € = F(E,w)is (§.n,®,p,0,m)-quasisonvex at y, ¢ is increasing, and

¢(0) =0;
(iii) & — 2(&,w) is (9,7, @, P, 0,m)-quasisonvex at y, ¢ is increasing, and
¢(0) =0;

(iv) p(x,y) +p(x,y) +p(x,y) >0;
(e) () & — &(&,u,A) is prestrictly (¢,n,®,p,0,m)-quasisonvex at y, and
¢(a)20=a>0;
(i) &€ = G(E,v,w) is (§,n,,p,0,m)-quasisonvex at y, ¢ is increasing,
and ¢(0) =
(i) p(x,y)+p(x,y) > 0.
Then @(x) > A.

Proof. (a) : Because of our assumptions specified in (ii) and (iii), (4.8) and (4.9)
remain valid for the present case. From (4.1), (4.2), (4.8), (4.9), and (iv) we deduce
that

p 1 P
<Z Vﬁ ’lvgl(y)]an(xvy)>+§<a)(x7y)72ul[vzft(y)—A'Vzg’(y)]z>
= i=1

+ 2 { Ll A0) ~AV5i0)],2)
i=1
> | L i)+ L w100 > -p) 10 )]",

| = keK,

which in view of (i) implies that

O (& (x,u,A)— & (y,u,A)) >0
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Because of the properties of the function ¢, the last inequality yields

& (x,u,A) > E(y,u,A) >0,
where the second inequality follows from the dual feasibility of .#” and (4.3). As

shown in the proof of Theorem 3.1, this inequality leads to the conclusion that ¢(x) >
A.

(b) - (e) : The proofs are similar to that of part (a). []

Theorem 4.8. (Strong Duality) Let x* be a normal optimal solution of (P) and assume
that any one of the five sets of conditions specified in Theorem 4.7 is satisfied for all
feasible solutions of (DI). Then for any z* € C(x*), there existu* € U, v e R, w* €
R", and A*(= @(x*)) € Ry such that (x*,z",u*,v*,w*,A*) is an optimal solution of
(DIl) and @(x*) = ™,

Proof. The proof is similar to that of Theorem 3.2. L]

Theorem 4.9. (Strict Converse Duality) Let x* be a normal optimal solution of (P),

~ o A e A

five sets of hypotheses specified in Theorem 4.7 is satisfied, and that the function
E— &(E,a,A) is (¢,n,p,0,m)-quasisonvex at % and ¢(a) >0 = a > 0. Then
X=x" and o(x*) = A.

Proof. The proof is similar to that of Theorem 4.6. L]
Theorem 4.10. (Weak Duality) Let x and . = (y,z,u,v,w, L) be arbitrary feasible

solutions of (P) and (DII), respectively, and assume that any one of the following

seven sets of hypotheses is satisfied:

(@) (1) &—&(E,u,A)isprestrictly (¢, n, ®,p, 0,m)-quasisonvex aty and ¢ (a) >
0=a>0;
(i) for each j € J. =J(v), Gj is strictly ((ﬁj, n,,p;,0,m)-pseudosonvex

aty, ¢; is increasing, and ¢;(0) = 0;
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(iii) foreachk € K, =K, (w), E = D (E,w) is (§, M, @, Pr, O,m)-quasisonvex

aty, @ is increasing, and qﬁk(()) =0,

(iv) p(x,y) +Ljes, viPj(x,y) + Liek. Prlx,y) 2 0;
(b) () & — &(&,u,A) is prestrictly (¢,n,,p,0,m)-quasisonvex at y, and
¢(a)>0=a>0;
(ii) &€ — F(E,v) is strictly (§,n,@,p,0,m)-pseudosonvex at y, ¢ is in-
creasing, and ¢ (0) = 0;
(iii) for eachk € K., & — Di(E,w) is (P, M, @, Pr, 0, m)-quasisonvex at y, ¢

is increasing, and @x(0) = 0;
(iv) p(x,y) +P(x,¥) + Lrek. Pr(x,y) = 0;

() () &—&(E,u,A)isprestrictly (¢,n,®,p,0,m)-quasisonvex aty and ¢ (a)
0=a>0;

IV

(i1) foreach jeJy, Gjis ((ﬁj, n,o,p;, 0,m)-quasisonvex at y, tﬁj IS increas-
ing, and §;(0) = 0;
(iii) foreachk € K., & — D (E,w) is strictly (@, 1, ©, P, 0,m)-pseudosonvex
aty, @ is increasing, and ¢, (0) = 0;
(iv) p(x,y) +Xjes, viPi(x,y) + Liek. WiPm(x,y) = 0;
(d) () &—&(E,u,A)isprestrictly (9,1, ®,p,0,m)-quasisonvex at y and ¢ (a)
0=a>0;

'V

(ii) for each j € Jy, & = Gj is (gﬁ,-,n,co,ﬁj,Q,m)—quasisonvex at v, (!3‘,- Is
increasing, and §;(0) = 0;

(iii) & — 2(&,w) is strictly (¢,1n,@,p,0,m)-pseudosonvex at y, ¢ is in-
creasing, and ¢ (0) = 0;

(iv) ﬁ(xvy) + Zj€J+ vjfjl(x7y) —l—ﬁ(x.y) >0,

(e) (i) &E—&(E,u,A)isprestrictly (¢,n,m,p,0,m)-quasisonvex aty and ¢ (a) >
0=a>0;
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~

(i) & = C(E,v) is strictly (¢,n,@,p,0,m)-pseudosonvex at y, ¢ is in-
creasing, and ¢(0) = 0;

Gii) &€ — 2(E,w)is (9,1, w,p,0,m)-quasisonvex aty, ¢ is increasing, and
¢(0) =0;
(iv) plx.y)+P(x,y)+p(x,y) = 0;
() (1) &E—&(E,u,A)isprestrictly (¢,n,®,p,0,m)-quasisonvex at y and ¢ (a) >
0=a=>0;
(ii) € —» €(E,v) is (.1, w,p,0,m)-quasisonvex at y, ¢ is increasing, and
9(0) =0;
(iii) & — 2(E,w) is strictly (§,1m,,p.0,m)-pseudosonvex at y, ¢y is in-
creasing, and ¢ (0) = 0;
(iv) plx,y)+P(x,y)+p(x,y) > 0;
(g (1) &—&(E,u,A)isprestrictly (9,n,®,p,0,m)-quasisonvex aty and ¢ (a) >
0=a>0;
(i) & — G (E,v,w) is strictly (9,1, ®, P, 0,m)-pseudosonvex at y, ¢ is in-

creasing, and (13(0) =z
(iii) p(x,y)+p(x,y) = 0.
Then @(x) > A.
Proof. (a): Since for each j € J., G;(x) — G;(y) <0and hence ¢,;(G,(x) — G;(y)) <

0, (i1) implies that

%(VGj(y), n(x,y)) + %(w(xyy), V2G;(y)z) + %(VGj(y),d
< —P;(x¥)]|0(x,y)[". (4.12)

Asv; > 0foreach j € gand v; =0 for each j € Q\JJr, the above inequalities yield
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(X G000 + 5 (0050, v 76, 002)1+ 5 L lVG00.2)

<= Y vipsen) 06y (4.13)

IS
Now combining this inequality with (4.1), (4.2), and (4.9) (which is valid for the

present case because of (iii)), and using (iv), we obtain

1 & 1 "
— u; i —A i ,N(x, — x,9), u; 2 A —i 2 ;
5 (L ul0) - AVa00) ne) + 5 (06e2). L ulTA0) -7 0)]2)

%<Zu, Vi) —AVe(y)l, >

> [ ¥ vipiwn)+ ¥ wiw)] 16" > Gl oyl

jel, keK,

which in view of (1) implies that

é(éa(xaua)') o g(yvuaﬂ')) >0
The rest of the proof is identical to that of Theorem 4.1.
(b) - (g) : The proofs are similar to that of part (a). []

Theorem 4.11. (Strong Duality) Let x* be a normal optimal solution of (P) and
assume that any one of the seven sets of conditions specified in Theorem 4.10 is
satisfied for all feasible solutions of (DII). Then for each 7* € C(x*), there exist u* €
U, v* € RL, w* e R, and A* € Ry such that (x*,z*,u*,v*,w*,A*) is an optimal
solution of (DII) and @(x*) = A*.

Proof. The proof is similar to that of Theorem 3.2. ]

Theorem 4.12. ( Strict Converse Duality) Let x* be a normal optimal solution of (P),

seven sets of hypotheses specified in Theorem 4.10 is satisfied, and that the function
E— &E,a,A)is (§,n,p,0,m)-quasisonvex at %. Then X =x* and @(x*) = A.
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Proof. The proof is similar to that of Theorem 4.6. L

In Theorems 4.4 - 4.12, various generalized (¢,n, @, p, 0, m)-sonvexity conditions
were imposed on the function § — &(&,u,A), which is the weighted sum of the func-
tions § — &;(§,A), i € p. In the next few theorems, we shall assume that the indi-
vidual functions & — &;(&,4), i € p, satisfy appropriate generalized (¢,1,p,6,m)-

sonvexity hypotheses.

Theorem 4.13. (Weak Duality) Let x and . = (y,z,u,v,w,A) be arbitrary feasible
solutions of (P) and (DII), respectively, and assume that any one of the following five
sets of hypotheses is satisfied:

(@) () foreachicl, =1.(u), & — &(&E,A) is prestrictly (¢;,n,®,p;, 0,m)-
quasisonvex at y, @; is strictly increasing, and ¢;(0) = 0;
(ii) for each j € J. =J.(v), Gjis ((}Sj,n, ®,p;,0,m)-quasisonvex at y, qi;j
is increasing, and §;(0) = 0;
(iii) foreachk € K. =K.(w), & = Dp(E,w) is (¢, M. @, Py, O, m)-quasisonvex
aty, @ is increasing, and ¢;.(0) = 0;
(iv) p°(x,y)+Xjer, viPi(x,y) + Liek, Pr(x,y) >0, where p°(x,y) = Licy, uipi(x,y);
(b) (@) foreachicl,, &— &(&,A) is prestrictly (¢;,1, @, p;, 0,m)-quasisonvex
at y, §; is strictly increasing, and ¢;(0) = 0;
(i) & = F(E,v)is (§,n,0,p,0,m)-quasisonvex at y, ¢ is increasing, and
$(0) =0;
(iii) for each k € K., & — (&) is (@, M, @, Pr, O,m)-quasisonvex at y, @
is increasing, and ¢(0) = 0;
(iv) p°(x,y) + P (x,y) + Erek. Pum(x,y) > 0;
(c) () foreachicly, &— &(E,R) isprestrictly (¢;,1, ®, p;, 0, m)-quasisonvex
aty, @; is strictly increasing, and ¢;(0) = 0;
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(ii) for each j € J,, Gjis (qﬁj,n,a),%,ﬁj, 0, m)-quasisonvex at y, (/SJ- is in-
creasing, and §;(0) = 0;
(iil) & — 2(E,w)is (§,1,®,p, 0, m)-quasisonvex at y, @y is increasing, and
6(0) =0;
(iv) p°(x,y) + X ey, viPj(x,y) +p(x,y) > 0;
(d) () foreachicl., & — &(&,A) is prestrictly (¢;,1, @, p;, 0, m)-quasisonvex
aty, @; is strictly increasing, and ¢;(0) = 0;

(i) &€ — C(Ev)is (0,7, @,p,0,m)-quasisonvex at y, ¢ is increasing, and

$(0) =0;
(iii) & — 2(&,w) is (¢, 1, w,p,0,m)-quasisonvex at y, ¢ is increasing, and
$(0)=0;

(iv) p°(x,y) +p(x,y)+p(x,y) > 0;
(e) (i) foreachicl,, &— &(E,A)is prestrictly (¢;,M, ®, p;, 0, m)-quasisonvex
aty, ¢; is strictly increasing, and ¢;(0) = 0;
(i) & = G (E,v,w) is (§,n,w,p,0,m)-quasisonvex at y, ¢ is increasing,
and ¢(0) = 0;
(i) p°(x,y) +p(x,y) > 0.
Then ¢(x) > A.

Proof. Suppose that ¢(x) < A. This implies that for each i € p, &;(x,A) < 0. Since
&i(y,A) > 0 by the dual feasibility of .# and (4.3), it follows that &;(x,4) < &;(y,4),
and hence for each i € I, ¢;(&(x,A) —&(»A)) < 0, which by virtue of (i) implies
that
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Since u > 0 and Y, u; = 1, the above inequalities yield

< )i (VA() —AVeg(y)], n(x,y)> + %<w(x,y), i i [V fi(y) — Wz&-(y)]z}

D | —

+%<Zu, Vi)~ V)] )
< — Z Lt,'pl' x,y)H (xay)“m'

iel,
Next, combining (4.1) and (4.2) with (4.8) and (4.9), which are valid for the present
case because of the assumptions set forth in (i1) and (ii1), and using (iv), we get
1 P

1/ 2
2 ( L ulVA0) ~AVa0)1(03)) + 5 (@), Y wlV£i0) ~AV8()]z)

=1

+3( L ulvA0) 298 0)L.)
> [ ¥ vipie)+ ¥ o] 16" > - ¥ upi ) 10"

= kek, il
which contradicts (4.10). Therefore, we conclude that ¢(x) > A.
(b) - (e) : The proofs are similar to that of part (a). []

Theorem 4.14. (Strong Duality) Let x* be a normal optimal solution of (P) and
assume that any one of the five sets of conditions specified in Theorem 4.13 is satisfied
for all feasible solutions of (DII). Then for each 7" € C(x*), there exist u* € U, v* €
R%, w* € R, and A* € Ry such that (x*,2*,u*,v*,w*,A*) is an optimal solution of
(DII) and @(x*) =

Proof. The proof is similar to that of Theorem 3.2. ]

Theorem 4.15. (Weak Duality) Let x and (y,z,u,v,w,A) be arbitrary feasible solu-
tions of (P) and (DII), respectively, and assume that any one of the following seven

sets of hypotheses is satisfied:

(a) (1) ]‘01" each i € I+ EI‘?‘(”)? é — 63(67)‘) LS prestrictly ((Bian:a)vﬁiveam)-

quasisonvex at y, ¢; is strictly increasing, and ¢;(0) = 0;
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(ii) for each j € J. =J(v), G; is strictly (qu,n, ®,p;j, 0,m)-pseudosonvex
aty, (ﬁj is increasing, and (fSJ-(O) ={]
(iii) foreachk € K. =K, (w), E = Z(E,w) is (§. 1, ©, Py, O, m)-quasisonvex

aty, @ is increasing, and (J;k(O) =0,

(iv) p°(x,y)+Xjer, viPj(x,y) +Liek, Pr(x,y) =0, where p°(x,y) = Yie, wiPi(x,y);
(b) (i) foreachiel,, & — &(&,A)is prestrictly (¢;,M, ®, p;, 0, m)-quasisonvex
aty, @; is strictly increasing, and ¢;(0) = 0;
(i1) foreach jeJ., Gjis (gﬁj, n,o,p;,0,m)-quasisonvex aty, (ﬁj is increas-
ing, and (ﬁj(O) =0;
(iii) foreachk € K., & — (&, w) is strictly (@, M, @, Py, 0,m)-pseudosonvex

aty, (ﬁk is increasing, and (ﬁk(O) =0

(iv) p°(x,y) +Yier, viPj(x,y) + Yk, Pr(x,y) = 0;
(c) (i) foreachicly, &— &(E, Q) is prestrictly (¢;,1, @, p;, 0, m)-quasisonvex
aty, @; is strictly increasing, and ¢;(0) = 0;
(i) & = €(E,v) is strictly (§,n,®,p,0,m)-pseudosonvex at y, ¢ is in-
creasing, and ¢(0) = 0;
(iii) foreachk € K., & — D(E,w) is strictly (§, M, @, Py, 0,m)-pseudosonvex
aty, @y is increasing, and ¢y (0) = 0;
(iv) p°(x,y) +P(x,¥) + Ekex, Pr(x,y) 2 0;
(d) () foreachiel,, & — &(E,A)is prestrictly (¢;,m, ®, p;, 0, m)-quasisonvex
aty, ¢; is strictly increasing, and ¢;(0) = 0;
(i1) foreach jcJi, Gjis ((5,-, n,o,p;,0,m)-quasisonvex at y, ¢A)‘,- is increas-
ing, and $;(0) = 0;
(iii) & — 2(E.w) is strictly (¢,n, @, P, 0,m)-pseudosonvex at y, ¢ is in-
creasing, and ¢(0) = 0;

(1V) po(x,y) +Ej€.]+ Vjﬁj(xay) +fj(xvy) > 0;
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(e) (i) foreachiel,, & — &(&,A) is prestrictly (¢;,n, @, p;, 0,m)-quasisonvex
aty, @; is strictly increasing, and ¢;(0) = 0;
(i) & — €(&,v) is strictly (¢, w,n,p,0,m)-pseudosonvex at y, ¢ is in-
creasing, and (}.'A)(O) =
(iii) & — 2(&,w) is (0,n,,p,0,m)-quasisonvex at y, ¢ is increasing, and
$(0) =0;
(iv) p°(x,y) +p(x,y)+p(x.y) = 0;
(f) (i) foreachicl,, &— &(E,A) isprestrictly (¢;, M, ®, p;, 6, m)-quasisonvex
aty, @; is strictly increasing, and ¢;(0) = 0;
(i) &€ = F(E,v)is (§,m,@,P,0,m)-quasisonvex at y, ¢ is increasing, and
6(0)=0;
(i) & — 2(E,w) is strictly (¢,1,,p,0,m)-pseudosonvex at y, ¢ is in-
creasing, and ¢(0) = 0;
(iv) p°(x,y) +p(x,y) +p(x,y) = 0;
(g) (i) foreachie€l,, &— &(E,N)is prestrictly (¢;, 1, ®, p;, 0,m)-quasisonvex
aty, ¢; is strictly increasing, and ¢;(0) = 0;
(ii) & — G(E,v,w) is strictly (¢, 1, @, P, 0,m)-pseudosonvex at y, ¢ is in-
creasing, and ¢(0) = 0;
(iii) p°(x,y)+p(x,y) 2 0.
Then @(x) > A.

Proof. The proof is similar to that of Theorem 4.10. [

Theorem 4.16. (Strong Duality) Let x* be a normal optimal solution of (P) and
assume that any one of the seven sets of conditions specified in Theorem 4.15 is
satisfied for all feasible solutions of (DII). Then for each 7* € C(x*), there exist u* €
U, v:eRY, w" e R, and A* € Ry such that (x*,z2",u*,v*,w*,A*) is an optimal
solution of (DII) and @(x*) = A”.
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Proof. The proof is similar to that of Theorem 3.2. U

Theorem 4.17. (Weak Duality) Let x and . = (y,z,u,v,w,A) be arbitrary feasible
solutions of (P) and (DII), respectively, and assume that any one of the following five
sets of hypotheses is satisfied:

(@) () foreachicl, =1 (u), & — &(E,A)is (¢, N, @, P;, 0,m)-pseudosonvex
aty, ¢ is strictly increasing, and ¢;(0) = 0;
(i) for each j € J, =J.(v), Gj is (¢;,1,®,p;,0,m)-quasisonvex at y, §;
is increasing, and §;(0) = 0;
(iii) foreachk € K, =K.(w), & —= D (E,w) is (P, M, @, Pr, 0, m)-quasisonvex
aty, @ is increasing, and (,5;((0) =0;
(iv) p°(x,y)+Ejes. viPi(x,y)+Liek, Pr(x,y) 2 0, where p°(x,y) = Lies, uiPi(x,y);
(b) () foreachicl,, & — &(E,A)is (¢;,1, @, p;, 6,m)-pseudosonvex at y, @;
is strictly increasing, and ¢;(0) = 0;
(ii) &€ = F(E,v)is (§,n,@,p,0,m)-quasisonvex at y, ¢ is increasing, and
9(0) =0;
(iii) for eachk € Ky, & — D (E,w) is (G, M, ©, Pr, O, m)-quasisonvex at y, @
is increasing, and ¢;(0) = 0;
(iv) p°(x,y) +P(x,y) + Lrek. Pr(x,y) = 0;
(¢) () foreachicl,, & — &(&E,A)is (¢;,n, ®,p;,0,m)-pseudosonvex at y, §;
is strictly increasing, and ¢;(0) = 0;
(ii) foreach j€J,, G;is (§;,n,®,p;,0,m)-quasisonvex aty, @, is increas-
ing, and §;(0) = 0;
(iii) &€ — 2(E,w)is (¢,n,®,p,0,m)-quasisonvex at y, § is increasing, and
$(0)=0;
(iv) p°(x,¥) +Ljes. viPj(x,y) +p(xy) 2 0;
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(d) @) foreachiel., & — &(E,A)is (¢;,n, ®,p;, 0,m)-pseudosonvex at y, @;
is strictly increasing, and ¢;(0) = 0;

(i) &€ = F(E,v)is (§,n,®,p,0,m)-quasisonvex at y, § is increasing, and

$(0) =0;
(i) & — 2(E,w)is (0.1, ,p,0,m)-quasisonvex at y, ¢ is increasing, and
6(0) =0;

(iv) p°(x,y) +p(x,y) +p(x,y) = 0;
(e) (i) foreachicl,, & — &(E, L) is (¢i,M, ®,p;, 0,m)-pseudosonvex at y, §;

is strictly increasing, and ¢;(0) = 0;

~

(i) &€ = Z(E,v,w) is (9,1, @,p,0,m)-quasisonvex at y, ¢ is increasing,
and ¢(0) = 0;

(iii) p°(x,y)+p(x,y) > 0.

Then @(x) > A.

Proof. (a) : Suppose that ¢(x) < A. This implies that for each i € p, &(x,4) <O0.
Since &;(y,A) > 0 by the dual feasibility of .% and (4.3), it follows that &;(x,4) <
&(y,A), and hence for each i € I, ¢;(&i(x,A) — &(y,A)) < 0, which by virtue of (i)

implies that

%(Vfa(y) ~AV) () + 5 (0, [V20) ~ AV i()]:)

2
+%(Vf,-(y) —AVgi(y),2)
< —Pi(x,3)[|0(x, ) ||

Since u > 0 and Z‘f:] u; = 1, the above inequalities yield
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I 4 1 p
(L ulVAi) =280 + 5 (00). LulVAi0) -2Vei)k)
1
2

< e Zulﬁl('xay)“e(xay)Hm (414)

icl,
Next, combining (4.1) and (4.2) with (4.8) and (4.9), which are valid for the present

case because of the assumptions set forth in (ii) and (iii), and using (iv), we get

%@W[Vﬁ(y)—wgi(yn,n(x,y)) <w<xy):i (V1) =28 0)))

P
+5(LulVi) ~Av8)2)

> | L vipien)+ E a0yl = = ¥ upiey)oyll”,

JET,. kek., iel,
which contradicts (4.10). Therefore, we conclude that ¢(x) > A.
(b) - (e) : The proofs are similar to that of part (a). []

5. CONCLUDING REMARKS

In this paper, we have introduced and formulated a number of second-order para-
metric duality models for a discrete minmax fractional programming problem and
established a multiplicity of duality theorems using the several classes of the gener-
alized (¢,m, ®,p, 0, m)-sonvexity assumptions. Furthermore, our approach for main
results may prove useful for applications to other related branches of nonlinear pro-
gramming problems based on other similar generalized invexity concepts. It may
be interesting to observe that employing similar techniques, one can investigate (and
establish) the sufficient optimality and duality models of the following semiinfinite

minmax fractional programming problem:
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Minimize max ﬁ(x)
I<i<p gi(x)

subject to
Gj(x,t) <0 forallz €T}, jeg,
Hi(x,s) =0 forall s € ¢, k€ r,

xeX,

where X, fi, and g;, i € p, are as defined in the description of (P), for each j € ¢
and k € r, T; and S; are compact subsets of complete metric spaces, for each j €
g, & — G;j(&,t) is a real-valued function defined on X for all ¢ € T}, for each k €
r, & — Hi(&,s) is a real-valued function defined on X for all s € S, for each j € q
andk €r,t — Gj(x,t) and s — Hi(x,s) are continuous real-valued functions defined,

respectively, on 7; and Sy for all x € X.
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