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Abstract. Equilibrium problem takes a leading role over a variety of mathematical problems
including but not limited to variational inequalities, optimizations, complementarity prob-
lems, fixed point theory in last the four decades. It provides an unified framework for the
solution of many problems with numerous applications. This paper presents a state-of-the-art
survey of equilibrium problems, variational inequalities and hemivariational inequalities.
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I. INTRODUCTION

In the last three decades equilibrium problem plays a key role for the study of many
problems in nonlinear analysis. The initial incitement for research on computation
of equilibria come from the need of analyzing the general equilibrium theory and to
apply this theory for the study problems like taxation and unemployment. Conse-

quently in 1955, Nikaido and Isoda [1] considered implicitly an equilibrium problem
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formulation with an aim to characterize the Nash equilibrium. The first results on the
existence of solutions for equilibrium problems were given in the paper by Ky Fan [2]
where he proved a minimax principle by using his own generalized version (Ky Fan
[3]) of Knaster-Kuratowski-Mazurkiewicz’s theorem. The problem itself was called
minimax inequality by Ky Fan, but nowadays it is widely known within the literature
as equilibrium problem.

In 1976, Mosco [4] introduced the notion of monotonicity for bifunctions and
obtained some existence results under weaker assumptions than those obtained by Ky
Fan [2]. The appellation equilibrium problem was introduced in the paper by Blum
and Oettli [5] in 1994, where it has been shown that equilibrium problems include
variational inequalities, fixed point, Nash equilibrium and game theory as special
cases. Equilibrium problems, for short (EP), have had a great impact and influence
in the development of several branches of pure and applied sciences. It has been
shown that the equilibrium problem theory provides a novel and unified treatment of
a wide class of problems which arise in economics, finance, image reconstruction,
ecology, transportation, network, elasticity and optimization. We particularly refer
our readers to [6, 7] and the bibliographies therein for excellent surveys concerning
a large spectrum of optimization and equilibrium models that can be written in the
form (EP).

Like equilibrium problem, variational inequality problem is a general problem
formulation that encompasses a surfeit of mathematical problems like, complemen-
tarity problems, partial differential equations, optimization problems and fixed point
problems. The concept of variational inequality was first appeared in an elastostatic
problem, posed by Antonio Signorini in 1953, known as Signorini problem. Histori-
cally, the variational inequality problem was introduced by Philip Hartman and Guido
Stampacchia in the seminal paper [8]. Variational inequality problems have succes-

sively been applied in the following major areas: fluid flow through porous media,
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lubrication problem, Nash equilibrium problems, tratfic network equilibrium prob-
lems, spatial price equilibrium problems, financial equilibrium problems and nonlin-
ear programing, see e.g. [9, 10, 11, 12].

Convexity of functions plays a key role in different areas of applied mathematics,
for instance in extremum problems. That is, some necessary conditions for the ex-
istence of a minimum become also sufficient in the presence of convexity. Another
important application of convexity is that in the presence of convexity, the lower
semicontinuity property of an operator becomes weakly lower semicontinuity [13].
Whereas, many real-life problems can be described in terms of nonconvex functions.
However, these functions, in spite of being nonconvex, retain some of the nice proper-
ties and characteristics of convex functions. For instance, their presence may ensure
that necessary conditions for a minimum are also sufficient or that a local minimum
is also a global one. This led to the introduction of several generalizations of the
classical concept of a convex function. Another well-known and useful property of
a convex function is that its sublevel sets are convex. Many simple nonconvex func-
tions also have this property. If we consider the class of all functions whose sublevel
sets are convex, we obtain what is called the class of quasiconvex functions that was
initiated by Finetti [14] in 1949. A significant generalization of convex functions is
the class of invex functions introduced by Hanson [15] in the year of 1981, where he
has further weaken the weakest conditions speculated by Mangasarian [16] for the
Kuhn-Tucker conditions of minimization problem. The concepts of invex functions
lead to important applications in convex programming. Application of the invexity
concept widens the scope of both variational inequalities and equilibrium problems.
Study of equilibrium problems with invexity is carried out in [17, 18, 19, 20] and the

references therein.
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The monotonicity of operators takes a key role for the description of the equilib-
rium problems and variational inequalities. The notion of monotonicity was intro-
duced by Minty [21] and Browder [22]. When the underlying space X of the vari-
ational inequalities is finite dimensional, then the continuity properties of the asso-
ciated operators guarantees the existence of solutions for the variational inequalities
[8]. But, when X 1is infinite dimensional, then continuity properties is not sufficient
for the existence of solutions, whereas monotonicity properties of the operator guar-
antees the existence of solutions. A variant of monotonicity known as strict mono-
tonicity provides the uniqueness of solutions for variational inequalities, see e.g. [11].
The key feature of monotonicity theory is that it does not require continuity assump-
tions or the single-valued properties of the operators that needed in contraction map-
pings and fixed point approaches. In order to deal with the existence of solutions for
nonlinear partial differential equations of elliptic and parabolic type in the context
of monotone operators, various generalizations of monotone operators are needed.
The convexity of a proper lower semicontinuous function can be characterized by
monotonicity of its subdifferential. More about the convexity and monotonicity can
be found in the handbook [23] and the references therein. By the time, the concept
of monotonicity has been generalized into pseudomonotonicity, quasimonotonicity,
relaxed monotonicity; see e.g. [24, 25, 26, 27].

In 2003, Fang and Huang [28] have defined relaxed 11 — o¢ monotone mappings
and established certain results of variational-like inequalities. Bai et al. [29] in 2006,
have defined relaxed N — & pseudomonotone operators and generalized the results of
Fang and Huang [28]. Inspired by Fang and Huang [28] and Bai et al. [29], Liu and
Zeng [19] in 2016, studied rigorously the equilibrium problem in the framework of
invexity assumptions with relaxed o — 1 pseudomonotonicity for bifunctions. They
called it as invex equilibrium problem. The work of Liu and Zeng [19] on invex
equilibrium problem was then generalized by Pany et al. [30] under generalized

o — 1N pseudomonotone mappings and then by Sahu and Pani [31] under the setting of
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generalized relaxed 11 — a pseudomonotone mappings and strictly 717-quasimonotone
mappings. In 2020, Sahu et al. [32] generalized the invex equilibrium problems to
mixed invex equilibrium problems under the setting of generalized relaxed monotone
mappings.

Another most general property of operators that can be used to manipulate equilib-
rium problems as well as variational inequalities is pseudomonotonicity in topologi-
cal sense. It was initiated by H. Brézis [33] in the year of 1968 and later it is known
as pseudomonotonicity in the sense of Brézis. The unique property of Brézis pseu-
domonotonicity that it is the hybridization of both monotonicity as well as continuity,
distinguishes it from the others. For instance, Kien et al. [34] proves that there exists
an operator which is pseudomonotone in the sense of Brézis but not pseudomonotone
in the sense of Karamardian. The class of pseudomonotone operators in the sense of
Brézis is quite large and rich in applications, see the very important paper by Browder
and Hess [35]. A very interesting and useful application of Brézis pseudomonotonic-
ity was given by Chadli et al. [36] in 2016, for finding the anti-periodic solutions of
nonlinear evolution equations. Another very important use of Brézis pseudomono-
tonicity in the study of coercive and noncoercive hemivariational inequalities can be
found in [37, 38].

The concept of hemivariational inequalities was introduced by Panagiotopoulos
[39] in 1983 as a variational formulation for several classes of mechanical prob-
lems with non-smooth and non-convex energy function. Various existence results for
hemivariational inequalities in a coercive and semicoercive framework can be found
in [40, 41], where the authors have used the well known Browder technique based
on a Galerkin approximaiton and a fixed point theorem. The case of noncoercive
hemivariational inequalities was then analyzed by Adly et al. [42] in 1995 using the
concept of recession analysis. The use of Equilibrium Problems Theory in the study
of coercive and noncoercive hemivariational inequalities has been initiated in [43, 44]

by means of monotonicity assumptions and arguments from the recession analysis. In
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[37], a Tikhonov type regularization procedure has been introduced for equilibrium
problems and used to derive some existence results for non coercive hemivariational
inequalities.

The paper is organized as follows. In Section 2, we provide some preliminary
concepts and results that are needed in the sequel. Section 3 deals with the existence
of solutions for the equilibrium problems with various kinds of generalized mono-
tone bifunctions. In section 4, we focus on invex equilibrium problems and mixed
invex equilibrium problems, where we meet various generalizations of Karamardian
pseudomonotone operators. In Section 5, we give various results on the existence of
solutions for Brézis pseudomonotone mixed equilibrium problems involving a set-
valued mapping in a general setting vector spaces in duality. We present also some
recent results on the existence of solutions for quasi-hemivariational inequalities in

Banach spaces.

2. PRELIMINARIES

In the sequel, for a subset M of a topological vector space X, we shall denote by
co(M) the convex hull of M, by ¢l/(M) the closure of M in X, by int (M) the interior of
M and by .7 (M) the family of all finite subsets of M. For X be a topological vector
space over R, Y be a real vector space and F : X =2 Y is a set-valued mapping, we
shall denote by Z(F) the domain of F,i.e. Z(F) ={x€ X : F(x) # 0}, and by 4 (F)
the graph of F,i.e. 4(F)={(x,®) e X xY : @ € F(x)}.

Definition 2.1. Let B be a real Banach space, K be a nonempty closed subset of B
and 1 : K x K — B be a mapping. The set K is said to be invex at a point u € K, with
respect to N if u+tn(v,u) € K, for all v e K and ¢ € [0,1]. The set K is said to be

invex with respect to 1 if it is invex at each point u € K.

Definition 2.2. Let X be a metric space and f : X — R be a real-valued function. The

function f is said to be
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(i) lower semicontinuous at x € X if, for any sequence {x,} € X converging to x,

we have

f(x) <liminf f(x,);

n—reo
(ii) weakly lower semicontinuous at x € X if, for any sequence {x, } € X converging

weakly to x, we have

f(x) <liminf f(x,);

H—rco
The function f is upper semicontinuous (weakly upper semicontinuous) at x € X if
— [ is lower semicontinuous (weakly lower semicontinuous) at x € X. We say that f
is lower semicontinuous (weakly lower semicontinuous) if f is lower semicontinuous

(weakly lower semicontinuous) for every x € X.

Lemma 2.1. [13] Let X be a normed space. If a function f: X — RU{+eo} is lower

semicontinuous and convex, then it is weakly lower semicontinuous.

Lemma 2.2. [13] Let X be a reflexive Banach space, X* be its dual and K C X be
bounded, closed and convex subset of X. Then K is compact in the weak topology
o(X,X*).

Definition 2.3. Let X and Z be two Hausdorff topological vector spaces. A set-valued
mapping F : X = Z is said to be

(i) lower semicontinuous at a point xo € X (for short, L.s.c. at xq), if and only if,
for any open set & C Z such that F(xp) N & # 0, there exists a neighborhood
U of xy such that F(x) N & # 0 for every x € U. We say that F is lower
semicontinuous (for short, 1.s.c.) if F is Ls.c. for every xg € X;;

(11) upper semicontinuous at a point xg € X (for short, u.s.c. at xp), if and only if,
for any open set & C Z such that F(x) C &, there exists a neighborhood U of
xo such that F(x) C @ for every x € U. We say that F' is upper semicontinuous

(for short, u.s.c.) if F is u.s.c. for every xp € X;
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(iii) closed, if and only if, for every net {xy}qcr C X converging to x and any
{va}aer C Y converging to y such that y, € F(xy) for all o € 1, we have
y € F(x),i.e. 4(F) is closed.

The following concepts and properties can be recalled from Aubin et al. [45].

Proposition 2.1. [45] Let X and Z be two Hausdorff topological vector spaces and
F : X = Z be a set-valued mapping. Let M be a subset of X such that F(x) is closed
forall x e M. If F is u.s.c. and M is closed, then 4 (F) is closed. If M is closed and
cl(F(M)) is compact, then F is u.s.c. if and only if 4 (F) is closed.

Proposition 2.2. [45] Let X and Z be two Hausdorff topological spaces, and F :
K = Z be a set-valued mapping where K is a compact subset of X. If F is upper

semicontinuous with compact values, then F(K) := J,cx F (x) is compact.

Proposition 2.3. [45] Let X and Z be two Hausdorff topological vector spaces and
F : X = Z a set-valued mapping. Then, F is l.s.c. if and only if, for any pair (x,y) €
4 (F) and any net {xq }qe; C X converging to x, we can determine, for each o € I,

an element yyo € F(x¢) such that yo — y;

Definition 2.4. A real-valued function f defined on a convex subset K of a real
reflexive Banach space B is said to be hemicontinuous if lirél+ fx+(1—1)y) = f(y)
F—

for all x,y € K.

Definition 2.5. Let X be a topological vector space over IR, ¥ be a real vector space
and (-,-) : ¥ x X — R be a bilinear form. A single-valued mapping F : X — Y is said
to be

(i) hemicontinuous if, for all x,y,z € X, the functional 1 — (F(x+1y),z) is contin-
uous on [0, 1];
(ii) upper hemicontinuous if, for all x,y,z € X, the functional t — (F(x +ty),z) is

upper semicontinuous on [0, 1].
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Definition 2.6. Let X be a topological vector space. A real-valued bifunction @ :
X x X — Ris said to be

(i) hemicontinuous if, for all x,y,z € X, the functional ¢ — ®(tx+ (1 —1)y,z) is
continuous on [0, 1];
(ii) upper hemicontinuous if, for all x,y,z € X, the functional t — P(tx+ (1 —1)y,2)

is upper semicontinuous on [0, 1].

Definition 2.7. Let K be a nonempty closed and convex subset of a real Banach space
B and B* be its dual. Let (-,-) : B* x B — R be a duality pairing between B* and B.
A mapping F : K — B* is said to be,
(1) monotone if, for all x,y € K,
(F(x) —F(y),x—y) = 0;
(i1) pseudomonotone (in the sense of Karamardian) if, for all x,y € K,

(F(x),y—x)>20 = (F(y),y—x) > 0.

Definition 2.8. Let X be a topological vector space over R, Y be a real vector space
and (-,-) : ¥ x X — R be a bilinear form. A set-valued mapping F : X =3 Y is said to
be

(i) monotone if, for any x,z € Z(F),
(@ —V,x—z) >0, forall®w e F(x)and 9 € F(z);
(ii) maximal monotone if, (@ —©,x—z) > O forall (z,) € 4(F) implies x € Z(F)

and @ € F(x).

Now, we recall some concepts for real-valued bifunctions inspired from similar
concepts defined for operators acting from a topological vector space to its dual space
[3, 6].

Definition 2.9. Let X be a topological vector space and K be a nonempty subset of
X. A real-valued bifunction @ : K x K — R is said to be
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(1) monotone if, for all x,z € K
D(x,2) + P(z,x) < 0; @.1)
(i1) pseudomonotone (in the sense of Karamardian) if, for all x,z € K

®(x,z) > 0 implies P(z,x) < 0.

If we take ®(x,y) = (F(x),y — x), where F is an operator from B to B, the dual
of real Banach space B, then the monotonicity (2.1) of the bifunction ® reduces to
the monotonicity of the operator /' as described earlier.

The following notion of maximal monotonicity was initiated by Blum and Oet-
tli [5] in an aim to extend the concept maximal monotone operators to bifunctions

describing an equilibrium problem.

Definition 2.10. [5] Let K be a nonempty closed and convex subset of a real reflexive
Banach space B and @ : K x K — R be a bifunction such that ®(x,x) =0 for all x € K.
® is said to be maximal monotone in the sense of Blum and Oettli if and only if for

every x € K and for every convex function ¢ : K — R with ¢(x) = 0, we have
D(y,x) < @(y), Vy € K implies 0 < P(x,y) + ¢ (y), Vy € K.
Definition 2.11. Let K be a nonempty closed and convex subset of a real reflexive
Banach space B and ®@ : K x K — IR be a bifunction.
(i) Foreach z € K, ®(-,z) is said to be upper sign continuous if
®(x;,z) >0, Vr € (0,1) implies ®(x,z) > 0,
forevery x € K and x; = (1 —)x+1z.

(ii) For each z € K, ®(z,-) is said to be quasiconvex if, for every x,y € K and x; =

(1—t)x+1ty,t €0,1], we have

®(z,x) < max{P(z,x),P(z,y)}.

The finite dimensional version of KKM theorem given by Knaster et al. [46] was

extended by Fan [3] in 1961 and again by himself [2] in 1972. For a nonempty subset
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K of a Hausdorff topological vector space X, a set-valued mapping F' : K = X 1s said
to be a KKM mapping if for any finite subset {y,y2,---,¥,} of K, the convex hull

co({y1,y2,++,¥n}) C Uiz F (3i)-

Lemma 2.3. [3] Let K be a nonempty subset of a Hausdorff topological vector space
X and F : K = X be a KKM mapping. If F(y) is closed in X for all y € K and compact

for some yy € K, then

() F(y) #0.

yek

3. EQUILIBRIUM PROBLEMS WITH GENERALIZED MONOTONE OPERATORS

Let K be a nonempty subset of a topological vector space X and @ : K x K — R be
a real-valued bifunction. By equilibrium problem, we mean the following problem:
Find ¥ € K, such that

®(x,y) >0, forall y € K. (3.1)
The bifunction @ : K x K — R is said to be an equilibrium bifunction if it satisfies
®(x,x) =0 forall x € K.

The first existence results for the problem (3.1) was given by Ky Fan [2]. The
equilibrium problem (3.1) was then studied extensively by various authors, see e.g.
[5, 9, 25, 47, 48, 49, 50]. In particular, Noor and Oettli [51] extended the problem
(3.1) in the year of 1995 to quasi equilibrium problems and pointed out that this is an
extension of Nash equilibria. A significant generalization of problem (3.1) was given
by Bianchi and Schaible [47] in the year of 1996 using quasimonotone and pseu-
domonotone bifunctions in topological vector spaces, where they have also extended
the work of Karamardian [52] from variational inequality and complementarity prob-
lems to equilibrium problems.

When the bifunction ® is vector-valued, then a general formulation of the problem
(3.1) leads to what is called vector equilibrium problem. Vector equilibrium problems
can be viewed as further and natural extension of vector variational inequalities in-

troduced by Giannessi [53] in 1980. It is a unified model of several known problems,
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namely, vector variational inequality problems, vector optimization problems, vector
saddle point problems and Nash equilibrium problems for vector-valued functions.
Many authors have contributed to the study of vector equilibrium problems and their
applications, we refer our readers to [54, 55, 56, 57, 58, 59, 60] and to the recent book
by Ansari, Kobis and Yao [61].

The dual of an equilibrium problem has been considered in the following refer-
ences [48, 62, 63]. It is defined as the following:

Definition 3.1. Let X be a real topological vector space, K be a nonempty subset of
X and @ : K x K — R be a real-valued bifunction. The dual equilibrium problem

consists to find an x € K such that

®(y,x) <0, forally € K. (3.2)

Remark 3.1. Martinez-Legaz and Sosa [64] used a diffrent approach to define the
dual of an equilibrium problem. They introduced an optimization problem as a dual to
(EP), relying on a gap function. On the contrary, the definition of a dual equilibrium
problem given above allows to introduce a dual equilibrium problem with no need of
a gap function and without formulating it as an optimization problem. In this way
also the duality approach for variational inequalities developed by Mosco [65] can be

easily recovered within this framework.

Below, we give some results on the existence of solutions for the dual equilibrium

problem (3.2). For more results, we refer to [62, 63, 64, 66].

Theorem 3.1. [48] Let X be a Hausdorff topological vector space and K be a nonempty
closed convex subset of X. Consider two real-valued bifunctions ® and ¥ defined on
K x K such that:

(HI) For eachx,y € K, if ¥(x,y) <0, then ®(x,y) <O0;
(H2) For each fixed x € X, the function ®(x,-) is lower semicontinuous on every

compact subset of K;
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(H3) For each finite subset A of K, one has

sup miny(x,y) <O0.
yeco(A) ¥ €A

(H4) (Coercivity condition) There exists a compact convex subset C of K such that
either (i) or (ii) below holds:
(i) for all y € K\ C, there exists x € C such that ®(x,y) > 0;
(ii) there exists xy € C such that for all y € K\ C, ¥(xp,y) > O.

Then, the dual equilibrium problem (3.2) has a solution. Furthermore, the set of

solutions is compact.

Theorem 3.2. [48] Let X be a Hausdorff topological vector space, K be a nonempty
closed convex subset of X and ®,%¥ : K X K — R be two real-valued bifunctions.
Assume that
(H2) For each fixed x € X, the function ®(x,-) is lower semicontinuous on every
compact subset of K.
(H4) (Coercivity condition) There exists a compact convex subset C of K such that
either (i) or (ii) below holds:
(i) forall y € K\ C, there exists x € C such that ®(x,y) > 0;
(ii) there exists xy € C such that for all y € K\ C, ¥(xo,y) > 0.
(H5) For each x,y € K, if ¥(x,y) <0, then ®(x,y) <O0.
(H6) For each x € K, ¥(x,x) <0 and ®(x,x) <O0.
(H7) For each finite subset {x;,x2,--+ ,x,} of K withn > 2, for eachy € co({xj,x2,-++ , X, }),

withy # x;, foralli=1,--- ,n, one has

min ¥(x;,y) <O0.

1<i<n
Then, the dual equilibrium problem (3.2) has a solution. Furthermore, the set of

solutions is compact.

Coercivity conditions for equilibrium problems have been studied by many au-

thors. The results of Flores-Bazédn [49] was then extended by Bianchi and Pini [66]
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in 2005, where they have provided the coercivity conditions as weak as possible, ex-
ploiting the generalized monotonicity properties of the function ® defining the equi-
librium problem. The following existence result for the equilibrium problem (3.1)

proved by Bianchi and Pini [66] improves Theorem 3.7 of Flores-Bazan [49].

Theorem 3.3. [66] Let K be a nonempty closed convex subset of a real reflexive Ba-

nach space B and ® : K x K — R be a bifunction satisfying the following conditions:

(i) D@ is pseudomonotone;

(it) D(-,y) is upper sign continuous, for every y € K;
(iii) If ®(x,y) =0 and ®(x,z) < 0, then ®(x,(1 —t)y+1z) <O, for everyt € (0,1);
(iv) ®(x,-) is quasiconvex, for every x € K;

(v) ®(x,x) >0, for every x € K.

Then, if the solution set Sk of (3.1) is nonempty and bounded, the following coercivity
condition (C) holds.

(C)Ir>0: Vxe K\K,, dy e K,, ®(x,y) <0,
where K, is the weakly compact subset of K defined as
K.,={xeK:|x| <r}.
Moreover, if we add the following condition:
(vi) lev<o®(x,-) is closed, for every x € K,

then condition (C) implies that S is nonempty and bounded.

Bai et al. [29] have introduced the notion of relaxed 1 — & pseudomonotone oper-
ators, they have generalized the results of Fang [28] for variational-like inequalities
associated to relaxed 1 — & monotone mappings. The notion of relaxed 1 — o pseu-

domonotone operators introduced by Bai et al. [29] is defined as the following:

Definition 3.2. [29] Let B be a Banach space with dual B* and K be a nonempty

subset of B. A mapping F : K — B* is said to be relaxed 1 — o pseudomonotone if
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there exist a mapping ] : K x K — B and a function o : B — R with a(tz) =t o(z)

for all r > 0 and z € B, where p > 0 is a constant, such that, for any x,y € K, we have
<F(y) n(x'y)) 2 0 lmplles <F(X),n(x’y)> 2 a(x_y)_ (33)

The variational-like inequality problem considered by Bai et al. [29] is as the

following: Find x € K such that
(F(x),n(y,x)) >0, Vy € K. (3.4)

They have used KKM techniques and proved the following existence result for the

variational-like inequality (3.4) in Banach spaces.

Theorem 3.4. [29] Let K be a closed, convex and bounded subset of the real re-
flexive Banach space B and F : K — B* be an 1n-hemicontinuous relaxed n —

pseudomonotone. Assume that

(i) n(x,y)+n(,x) =0, forall x,yin K;
(ii) For any fixed y,z in K, the mapping x — (F(z),n(x,y)) is convex and lower
Semicontinuous;

(iii) o : B — R is weakly lower semicontinuous.

Then there exists at least one solution for the problem (3.4).

The relaxed n — o pseudomonotonicity of Bai et al. [29] was then extended
by Arunchai et al. [67] in 2014. They have used a KKM techniques and proved
some existence results for generalized variational-like inequalities with relaxed n —
o¢ pseudomonotone mappings and strictly 1-quasimonotone mappings which ex-
tend some results of Kien et al. [68] given in 2008. In 2014, Mahato and Nahak
[18] have defined generalized relaxed or-monotonicity and generalized relaxed o-
pseudomonotonicity for bifunctions and proved some results on mixed equilibrium
problems which in fact generalized the results of Fang [28] for the variational-like

inequalities.
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Definition 3.3. Let K be a nonempty closed convex subset of a real reflexive Banach

o(ty+(1—r)xx)
t _

space B and o : K x K — R be a real-valued function such that lim,

0. The bifunction @ : K x K — R is said to be generalized relaxed o-monotone if

& (x,y) +@(y,x) < a(y,x), Vx,y € K.

The mixed equilibrium problem (MEP) considered by Mahato and Nahak [18] is
to find a vector X € K such that

®(%,y) + @) — @(x) >0, Vy €K, (3.5)

where @ : K — R is a real-valued function and ® : K x K — R is an equilibrium bi-

function.

The following existence results for mixed equilibrium problem (3.5) was estab-
lished by Mahato and Nahak [18].

Theorem 3.5. [18] Let K be a nonempty bounded closed convex subset of a real
reflexive Banach space B and @ : K — R be a convex and lower semicontinuous
function. Let ® : K x K — R be a bifunction such that ®(x,x) = 0 for all x € K.
Suppose that P is generalized relaxed a-monotone and hemicontinuous in the first

argument. Also assume that:

(i) For fixed z € K, the mapping x — ®(z,x) is convex and lower semicontinuous,

(ii) a: X x X — R is weakly upper semicontinuous in the second argument.

Then the mixed equilibrium problem (3.5) has a solution.

Theorem 3.6. [18] Let K be a nonempty unbounded closed convex subset of a real
reflexive Banach space B and @ : K — R be a convex and lower semicontinuous
function. Let ® : K x K — R be a bifunction such that ®(x,x) = 0 for all x € K.
Suppose that ® is generalized relaxed a-monotone and hemicontinuous in the first

argument. Furthermore, assume that:

(i) For fixed z € K, the mapping x — P(z,x) is convex and lower semicontinuous,
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(ii) o : X x X — R is weakly upper semicontinuous in the second argument,
(iii) (Coercivity condition) There exists a point xo € K and R > 0 such that ®(x,xq) +
@(x0) — @(x) < 0, whenever |x|| > R.

Then the mixed equilibrium problem (3.5) has a solution.

4. INVEX EQUILIBRIUM PROBLEMS WITH GENERALIZED MONOTONE
OPERATORS

Noor [69, 70] introduced and studied the following invex equilibrium problem:
Find x € K such that
@ (x,n(y,x)) 20, Vy €K, (4.1)
where @ : K x K — R is a bifunction and 71 : K X K — K is a mapping and K is an
invex set with respect to 1.
In 2014, Chen et al. [17] have introduced the n-pseudomonotone bifunction and
gave some existence results for the problem (4.1) in a finite dimensional setting.
The 1n-pseudomonotonicity notion introduced by Chen et al. [17] is defined as the

following:

Definition 4.1. Let K C R” be an invex set with respect to 1. A bifunction @ :

K x K — R is said to be n-pseudomonotone on K if, for any x,y € K

O(x,n(y,x)) 20 = P(y,—n(y,x)) <O0.

Inspired by Chen et al. [17], Liu and Zeng [19] have introduced the relaxed ot — n
pseudomonotonicity notion for bifunctions and proved many existence results for
the invex equilibrium problem (4.1). The relaxed & — 1 pseudomonotonicity notion

introduced by Liu and Zeng [19] is defined as the following:

Definition 4.2. [19] Let K be a nonempty subset of a real Banach space B, the equi-
librium bifunction @ : K x B — R is said to be relaxed & — 1) pseudomonotone if, for
any x,y € K

O(x,n(%x)) 20 = (y,n(nx)) = aly—x),
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wheren: K xK —+Band o : B — R.

Using Schauders fixed point theorem as well as KKM technique, Liu and Zeng
[19] have proved the following existence result for the invex equilibrium problem

(4.1).

Theorem 4.1. [19] Let K be a nonempty closed and invex set with respect 1 with
N(x,x) =0forall x € K. Let ®: K x B — R be a bifunction such that ®(x,x) = 0 for
all x € K. Furthermore, suppose that
(i) @ is positively homogeneous with respect to the second argument and a relaxed
o — N pseudomonotone;
(ii) P is hemicontinuous with respect to the first argument;

(iii) For all x,y,z € K, the function ® satisfies

d(y,n (x+”7 (Z,M),X)) < rcp(y, W(Z:x)) 1 —I)q)(y: n (x.*-x));

(iv) a:B — R satisfies

im o (tx)
t—ot 4

(v) Forall x € K, the function ®(x,n(-,x)) is convex;

=0, Vx eK;

(vi) For eachy € K, the function ®(y,n(y,)) is upper semicontinuous.
(vii) limsup, .. &(x,) > a(x) whenever x, — x;
(viii) There exists yg € K, such that Viy .= {x € K : ®(yo,n(y0,x)) > a(yo—x)} is a

compact subset of IB.

Then, the invex equilibrium problem (4.1) has at least one solution.

In 2016, Pany et al. [27] extended the results of Bai et al. [29] and Mahato and
Nahak [ 18] to nonlinear mixed variational-like inequality problem under generalized
weakly relaxed 1 — o monotonicity. They have also introduced the concept general-
ized weakly relaxed a.-monotonicity for a trifunction. It is defined as the following:
Given a nonempty convex subset K of a real Banach space B and a real-valued func-

tion o : B x B — R, the trifunction @ : K x K x K — R is said to be generalized
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weakly relaxed a-monotone if, for all x,y,z € K one has
O(z,x,y) +P(z,5,x) < a(x,y),

with lim,_, :{—‘;a(ter (1—1)y,y) =0. Using the generalized weakly relaxed a-monotonicity
notion, Pany et al. [27] proved many existence results for the following mixed equi-

librium problem: Find x € K such that
(I)(Z:y:«x) + (P(x,y) _ (P(X-.IX) > 03 v}? € K'J

where K is a nonempty convex subset of a Banach B with dual space B*, ¢ : B x B —
R is a real-valued bifunction, ) : K x K — B is a mapping and ® : K x K x K — R
is a trifunction defined by ®(z,y,x) = (N(y,2),n(x,y)), with N : B x B — B* is an
operator.

Inspired by Mahato and Nahak [18], Liu and Zeng [19] and Pany et al. [27], Sahu
and Pani [31] have defined generalized relaxed n — o pseudomonotone mapping and
strictly n7-quasimonotone mapping for bifunctions and proved some existence results
of invex equilibrium problem in reflexive Banach spaces. Let K be a nonempty subset
of a real reflexive Banach space B, ® : K x K — R be a bifunction such that ®(x,x) =
Oforallx € Kand n : K x K — B be a mapping. Then the invex equilibrium problems
considered by Sahu and Pani [31] is to find x € K such that

®(x,7(y,x)) > 0, Yy K. 4.2)

Definition 4.3. [31] A bifunction ® : K x K — R is said to be generalized relaxed
n — a pseudomonotone if there exists a function 1) : K x K — B and a function & : K x

K - R with lim *U10:%):%)

1 : =0 for all (y,x) € K x K such that for any x,y € K,
t—0+

we have

®(x,n(y,x)) = 0 implies ®(y,1(y,x)) > (1 (y,x),x). (4.3)

With the above generalized relaxed n — a pseudomonotone mapping, Sahu and
Pani [31] have proved the following existence results for the invex equilibrium prob-

lem (4.2) in the setting of reflexive Banach spaces.
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Theorem 4.2. [31] Let K be a closed, bounded and convex subset of a real reflexive
Banach space B. Let @ : K x K — R be a bifunction such that ®(x,x) = 0 for all x €
K. Suppose that @ is generalized relaxed N — o pseudomonotone, hemicontinuous in
the first argument and positively homogeneous in the second argument. In addition,

assume that

(i) for any fixed y, z, the mapping x — ®(z,m(x,y)) is convex;

(ii) for any fixedy, z, the mapping x — ®(z,1(y,x)) is upper semicontinuous;
(iii) for each y € B, the function a(n(y,-),-) is weakly lower semicontinuous;
(iv) n(x,x) =0,Vx € K;

(v) n(tx+(1—1)y,z2) = (x,z)+ (1 —1)n(y,z),Yx,y,z € K, t € [0,1].

Then the invex equilibrium problem (4.2) has a solution.

Theorem 4.3. [31] Let K be a closed, unbounded and convex subset of a real reflexive
Banach space B. Let @ : K x K — R be a bifunction such that ®(x,x) = 0 for all x €
K. Suppose that @ is generalized relaxed N — o pseudomonotone, hemicontinuous in
the first argument and positively homogeneous in the second argument. In addition,

assume that

(i) for any fixed y, z, the mapping x — ®(z,M(x,y)) is convex;
(ii) for any fixed y, z, the mapping x — ®(z,M(y,x)) is upper semicontinuous;
(iii) for each y € B, the function a(n(y,-),-) is weakly lower semicontinuous;
(iv) n(x,x) =0,Vx € K;
(v) ntx+ (1—1)y,z) =t (x,2) + (1 —1)n(y,2),Vx,y,z € K, t € [0,1];
(vi) (Coercivity condition) there exists xo € K and R > 0 such that ®(x,n(x,xq)) > 0,

whenever ||x|| > R and x € K.

Then the invex equilibrium problem (4.2) has a solution.

Theorem 4.4. [31] Let K be a nonempty closed and convex subset of a real reflexive
Banach space B. Let @ : K x K — R be a bifunction such that ®(x,x) = 0 for all x €

K. Suppose that ® is generalized relaxed | — o pseudomonotone, hemicontinuous in
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the first argument and positively homogeneous in the second argument. In addition,
assume that

(i) for any fixed y, z, the mapping x — ®(z,m(x,y)) is convex;

(ii) for any fixed y, z, the mapping x — ®(z,1n(y,x)) is upper semicontinuous;
(iii) for each y € B, the function a(n(y,-),-) is weakly lower semicontinuous;

(iv) n(x,x) =0,Vx € K;

(v) ntx+(1—1)y,z) =tn(x,2) + (1 —t)n(»,z),vx,y,z € K, t € [0, 1].
Then the invex equilibrium problem (4.2) and the following problem (4.4) are equiv-
alent:

There exists a point x € K such that the set

BY = {y e K:®(yn(yx)) < a(n(y.x),x)} (4.4)

is bounded.

The following notion of strictly 1-quasimonotonicity for bifunction was defined

by Sahu and Pani [31].

Definition 4.4. [31] A bifunction ®: K x K — R is said to be strictly n-quasimonotone
if there exists a function 1 : K x K — B such that, for any x,y € K,

®(x,n(y,x)) > 0 implies ®(y,n(y,x)) > 0. (4.5)

Sahu and Pani [31] then proved the following existence results for the invex equi-

librium problem (4.2) using strictly 1-quasimonotone mappings.

Theorem 4.5. [31] Let K be a closed, bounded and convex subset of a real reflexive
Banach space B. Let @ : K x B — R be a bifunction such that ®(x,x) = 0 for all x €
K. Suppose that P is strictly n-quasimonotone, hemicontinuous in the first argument
and positively homogeneous in the second argument. In addition, assume that

(i) for any fixed y, z, the mapping x — ®(z,m(x,y)) is convex;

(ii) for any fixed y, z, the mapping x — ®(z,1n(y,x)) is upper semicontinuous;
(iii) D(x,—y) = —D(x,y);
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(iv) n(x,y) +n(yx) =0, Vx,y € K.

Then the invex equilibrium problem (4.2) has a solution.

Theorem 4.6. [31] Let K be a closed, unbounded and convex subset of a real reflexive
Banach space B. Let @ : K x B — R be a bifunction such that ®(x,x) = 0 for all x €
K. Suppose that ® is strictly N -quasimonotone, hemicontinuous in the first argument

and positively homogeneous in the second argument. In addition, assume that

(i) for any fixed y, z, the mapping x — ®(z,n(x,y)) is convex;
(ii) for any fixed y, z, the mapping x — ®(z,M(y,x)) is upper semicontinuous;
(iii) D(x,—y) = —P(x,y);
(v) nx,y)+n(y.x) =0,vx,y € K;
(v) (Coercivity condition) there exists xo € K and R > 0 such that ®(x,n(x,xp)) >0,
whenever ||x|| > R and x € K.

Then the invex equilibrium problem (4.2) has a solution.

Theorem 4.7. [31] Let K be a nonempty closed and convex subset of a real reflexive
Banach space B. Let @ : K x B — R be a bifunction such that ®(x,x) = 0 for all x €
K. Suppose that D is strictly N-quasimonotone, hemicontinuous in the first argument

and positively homogeneous in the second argument. In addition, assume that

(i) for any fixed y, z, the mapping x — ®(z,1n(x,y)) is convex;
(ii) for any fixed y, z, the mapping x — ®(z,M(y,x)) is upper semicontinuous;
(iti) ®(x,—y) = —P(x,y);
(iv) n(x,y)+n(y,x) =0,Vx,y € K.
Then invex equilibrium problem (4.2) and the following problem (4.6) are equivalent:

There exists a point x € K such that the set
B)={y e K: ®(y,n(y,x)) <0} (4.6)

is bounded.
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Theorem 4.8. [31] Let K be a nonempty closed and convex subset of a real reflexive
Banach space B. Let @ : K x B — R be a bifunction such that ®(x,x) =0 for all x €
K. Suppose that ® is strictly n-quasimonotone, hemicontinuous in the first argument

and positively homogeneous in the second argument. In addition, assume that

(i) for any fixed y, z, the mapping x — ®(z,n(x,y)) is convex;

(ii) for any fixed y, z, the mapping x — ®(z,m(v,x)) is upper semicontinuous;
(iii) P(x,—y) = —D(x,y);
(iv) n(x,y) +n(y,x) =0,Vx,y € K.

If there exists a point x € K such that the set
B.={y €K: ®(y,n(x)) <0} (4.7)

is bounded, then the solution set S(®,n) of the invex equilibrium problem (4.2) is

nonempty and bounded.

The results of Sahu and Pani [31] was then generalized by Sahu et al. [32] in 2020,
where they have also generalized the the results of Liu and Zeng [19]. They have
introduced the generalized relaxed 11 — o monotonicity for bifunctions and establish

certain existence results for the following mixed invex equilibrium problem (for short,
(MIEP)): Find x € K such that

@(x,n(y,x)) +@(y) —o(x) >0, Vy € K, (4.8)

where K is a nonempty subset of a real reflexive Banach space B, n : K x K — B,
¢ : K — R is amapping and @ : K x K — R is a real-valued bifunction such that
®(x,x) =0 forall x € K.

The generalized relaxed 1 — o monotonicity for bifunctions defined by Sahu et al.

[32] is given in the following definition.

Definition 4.5. A bifunction @ : K x K — R is said to be generalized relaxed n — o

monotone if there exists a function 1 : K x K — B and a function ¢ : K x K — R
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with Tion SPTOR) %)

=0Tt I

= 0 for all (y,x) € K x K such that for any x,y € K, we have
D(y,1(y,x)) — (x,n(y,x)) = (N (yx),x). (4.9)

The following results for the mixed invex equilibrium problem (4.8) was estab-
lished by Sahu et al. [32] using generalized relaxed n — @ monotone mappings for

bifunction in reflexive Banach spaces.

Theorem 4.9. [32] Let K be a nonempty closed, convex and bounded subset of a
real reflexive Banach space B and ¢ : K — R be a convex and lower semicontinuous
mapping. Let ® : K x K — R be a bifunction such that ®(x,x) = 0 for all x € K.
Suppose that @ is generalized relaxed N — o« monotone, hemicontinuous in the first
argument and positively homogeneous in the second argument. Furthermore, assume

that

(i) for any fixed y, z, the mapping x — ®(z,1(x,y)) is convex;

(ii) for any fixed y, z, the mapping x — ®(z,1M(y,x)) is upper semicontinuous;
(iii) for eachy € B, the function x — o(n(y,x),x) is weakly lower semicontinuous;
(iv) n(x,x) =0, Vx € K;

(v) ntx+ (1 —=t)y,z) =t (x,2)+ (1 —-)n(y,2), Vx,y,z€ K, t € [0,1].

Then the mixed invex equilibrium problem (4.8) has a solution.

Theorem 4.10. [32] Let K be a nonempty closed, convex and unbounded subset of a
real reflexive Banach space B and @ : K — R be a convex and lower semicontinuous
function. Let ® : K x K — R be a bifunction such that ®(x,x) = 0 for all x € K.
Suppose that @ is generalized relaxed N1 — o monotone, hemicontinuous in the first
argument and positively homogeneous in the second argument. Furthermore, assume

that

(i) for any fixedy, z, the mapping x — ®(z,m(x,y)) is convex;
(ii) for any fixedy, z, the mapping x — ®(z,M(y,x)) is upper semicontinuous;

(iii) for eachy € B, the function x — o(n(y,x),x) is weakly lower semicontinuous,
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(iv) n(x,x) =0, Vx € K;

(v) n(tx+ (1 —-t)y,z) =m(x,2)+ (1 —t)n(y,2), Vx,y,z€ K, t € [0,1];

(vi) (Coercivity condition) there exists xo € K and R > 0 such that ®(x,1n(xo,x)) +
¢ (x0) — @(x) <0, whenever ||x|| > R and x € K.

Then the mixed invex equilibrium problem (4.8) has a solution.

Theorem 4.11. [32] Let K be a nonempty closed and convex subset of a real reflexive
Banach space B and @ : K — R be a convex and lower semicontinuous function. Let
® : K x K — R be a bifunction such that ®(x,x) = 0 for all x € K. Suppose that
D is generalized relaxed 11 — &¢ monotone, hemicontinuous in the first argument and

positively homogeneous in the second argument. Furthermore, assume that

(i) for any fixed y, z, the mapping x — ®(z,n(x,y)) is convex;

(ii) for any fixed y, z, the mapping x — ®(z,n(y,x)) is upper semicontinuous,
(iii) for eachy € B, the function x — (N (y,x),x) is weakly lower semicontinuous;
(iv) n(x,x) =0, Vx € K;

(v) n(tx+(1=1)y,2) =m(x,2) + (1 =1)n(y,2), ¥x,y,z€ K, 1 €[0,1].
Then MIEP (4.8) and the following problem (4.10) are equivalent:

Find a vector x € K such that the set

BY={yeK: fy,n(x)+ 1) — o) < a(n(x),x)}, (4.10)

is bounded.

Sahu et al. [32] have also introduced the notion of relaxed p — 6 invariant pseu-
domonotonicity for bifunctions and proved certain existence results of the invex equi-

librium problem (4.2) in reflexive Banach spaces.

Definition 4.6. [32] Let B be a real reflexive Banach space and K be a nonempty
subset of B. Assume n1: K x K — B and 6 : K x K — R are the functions and p € R

is a constant. A bifunction @ : K x K — R is said to be relaxed p — @ invariant
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pseudomonotone with respect to 1 if for any x,y € K, we have

D(x,1(7,x) =0 = By, (13)) = p|O(y. )| @.11)

Theorem 4.12. [32] Let K be a nonempty closed, convex and bounded subset of a real
reflexive Banach space B. Let ® : K x K — R be a bifunction such that ®(x,x) =0
forall x € K. Suppose that @ is relaxed p — 0 invariant pseudomonotone with respect
to 1, hemicontinuous in the first argument and positively homogeneous in the second

argument. Furtherm()re, assume that

(i) for any fixed y, z, the mapping x — ®(z,1m(x,y)) is convex;
(ii) for any fixed y, z, the mapping x — ®(z,M(y,X)) is upper semicontinuous;
(iii) 0(x,y)+ 0(y,x) =0, Vx,y € K;
(iv) O(x,y) is convex in second argument, concave in first argument and lower semi-
continuous with respect to second argument;

(v) n(x,x) =0, Vx € K.

Then, the invex equilibrium problem (4.2) has a solution.

Theorem 4.13. [32] Let K be a nonempty closed, convex and unbounded subset
of a real reflexive Banach space B. Let @ : K x K — R be a bifunction such that
®(x,x) = 0 for all x € K. Suppose that @ is relaxed p — 0 invariant pseudomonotone
with respect to 1, hemicontinuous in the first argument and positively homogeneous

in the second argument. Furthermore, assume that

(i) for any fixed y, z, the mapping x — P(z,1n(x,y)) is convex;
(ii) for any fixed y, z, the mapping x — ®(z,n(y,x)) is upper semicontinuous;
(iii) 0(x,y)+06(y,x) =0, Vx,y €K;
(iv) O(x,y) is convex in second argument, concave in first argument and lower semi-
continuous with respect to second argument;
(v) n(x,x) =0, Vx€K;
(vi) (Coercivity condition) there exists xo € K and R > 0 such that ®(x, 1 (xp,x)) <0,
whenever ||x|| > R and x € K.
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Then, the invex equilibrium problem (4.2) has a solution.

Theorem 4.14. [32] Let K be a nonempty closed convex subset of a real reflexive
Banach space B. Let @ : K x K — R be a bifunction such that ®(x,x) = 0 for all
x € K. Suppose that @ is relaxed p — 0 invariant pseudomonotone with respect to
1, hemicontinuous in the first argument and positively homogeneous in the second
argument. Furthermore, assume that

(i) for any fixed y, z, the mapping x — ®(z,n(x,y)) is convex;

(ii) for any fixed y, z, the mapping x — ®(z,1(y,x)) is upper semicontinuous;

(iii) 0(x,y)+0(y,x) =0, Vx,y € K;

(iv) O(x,y) is convex in second argument, concave in first argument and lower semi-

continuous with respect to second argument;

(v) n(x,x)=0, Vx € K.
Then, the invex equilibrium problem (4.2) and the following problem (4.12) are equiv-
alent:

Find an x € K, such that the set
B, ={y e K: ®(y,n(y,x)) <plO(y.x)|*}, (4.12)

is bounded.

5. BREZIS PSEUDOMONOTONE EQUILIBRIUM PROBLEMS

The pseudomonotonicity notion of operators in the topological sense was intro-

duced by Brézis [33] in 1968, it is defined as the following.

Definition 5.1. [33] Let X and Y be topological vector spaces over R and (-,-) :
Y x X — R be a bilinear form. A single-valued mapping F : K — Y is said to be
pseudomonotone in the sense of Brézis if, for any generalized sequence {xq }acr
satisfying {xq } o7 stays in a compact set and converges to X and limsup(F (xg ), Xg —

X) <0, its limit X satisfies

(F(x),x—z) <liminf(F(xq),xq —z), forall z € K.
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The pseudomonotonicity in the sense of Brézis was then extended to bifunctions
by J. Gwinner [71] in the year of 1978 and further by himself in the couple of papers
[72, "13].

Definition 5.2. [71] Let X be a topological vector space over R and K be a nonempty
closed and convex subset of X. We shall say that a bifunction ¥ : K x K — R is
pseudomonotone in the sense of Brézis, for short B-pseudomonotone, if for any gen-
eralized sequence {xg }oe; satisfying {xq }aes stays in a compact set and converges

to X and liminf'W(x,X) > 0, its limit ¥ satisfies
W(x,z) > limsup¥(xq,z), forallz € K.

This concept of pseudomonotonicity has also been considered by Aubin [74] with
an aim to relax the continuity properties for the study of various problems related to
minimax formulations in game theory as well as fixed points theory. The attractive
property of Brézis pseudomonotonicity is that it provides a unified approach to both
monotonicity and compactness arguments, since for instance if F; is a monotone and
hemicontinuous operator and F; is a strongly continuous operator, then F' = F| +
1s a pseudomonotone operator in the sense of Brézis, see Zeidler [75, page 586].
Further, if the bifunction ¥ : K x K — R defined by ¥(x,y) = (F(x),y —x) is upper
semicontinuous with respect to the first argument, then it is B-pseudomonotone. The
converse of which is not true as shown by Steck [76] in 2019, where he has provided
a counter example to a claim of Sadeqi and Paydar [77] that these two properties are

equivalent.

On the other hand most of the researchers in literature find the existence of so-
lutions for equilibrium problems using the techniques of KKM principle as well as
arguments from generalized monotonicity and convexity, see [35, 47]. A twist on this
trend has been reached when Chadli et al. [36] studied the existence of anti-periodic
solutions for nonlinear evolution equations by means of an equilibrium problem ap-

proach. They have used a new approach which is based on the notions of maximal
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monotonicity for bifunctions, initiated by Blum and Oettli [5], Hadjisavvas and Khat-
ibzadeh [78] as well as the concept of pseudomonotonicity in the sense of Brézis.
They proceed by a Browder-Tikhonov regularization procedure by considering the

following regularized mixed equilibrium: Given € > 0, find x € K such that
D(x,y) +¥(x,y) +€(J(x),y—x) >0, forally € K (5.1)

where K is a nonempty, closed and convex subset of a reflexive Banach space B,
®,¥: K x K — R are two bifunctions and J : B = B* is the duality mapping defined
by

J(x) = {x" €B": {x",x) = [|x"||* and |"|| = [lx[|}.

The following existence result for the regularized problem (5.1) has been proved
in [36].

Theorem 5.1. [36] Let K be a nonempty, closed and convex subset of a reflexive
Banach space B and ®,¥ : K x K — R be real-valued bifunctions such that ®(x,x) =
Y(x,x) =0 forall x € K. Suppose that

(i) D is monotone and maximal monotone in the sense of Blum and Oettli;
(ii) W is B-pseudomonotone;
(iii) P is weakly lower semicontinuous with respect to the second argument;
(iv) for each finite subset A of K and each y in K fixed, the function x € K — ¥ (x,y)
is upper semicontinuous on co(A);
(v) ® and Y are convex with respect to the second argument;
(vi) there exists a weakly compact subset W € K such that for each € > 0, there exists

a weakly compact and convex subset Be of K satisfying the following condition:
Vx € K\ W, dy € Be such that ¥(x,y) + &{J(x),y —x) < ®(y,x).

Then, the regularized mixed equilibrium problem (5.1) has at least one solution.
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Recently, Liu, Migorski and Zeng [79] have established many existence results for

the following mixed quasi-equilibrium problem:

Find x € D(®) N D(¥) and x* € F(x) such that
", 1 (x,y)) + P(x,y) + ¥(x,y) >0, (5.2)
Vy €K,

where K is a nonempty, closed and convex subset of Banach space B with dual space
B*, F: K= B" is a set-valued mapping, 1 : K x K — B is a mapping and &,V :
K x K — RU{—o0,+co} are two bifunctions with D(®) N D(¥) # 0. Here D(®) and
D(W¥) represent, respectively, the domain of ® and W, i.e. D(®) := {x € K: ®(x,y) #
—oo, Vy € K}.

They have then used the maximal monotonicity concept for bifunctions and proved

the following existence result for the mixed quasi-equilibrium problem (5.2).

Theorem 5.2. [79] Let K be a nonempty, compact and convex subset of a real Banach
space B. Assume that:
N : K x K — B is a mapping satisfying the following conditions:
(i) N(x,x) =0 forall x € K,
(ii) forall y € K, n(-,y) is continuous,
(iii) forallxe K, neN, y; €K, A;€[0,1], j=1,2,--- ,n with Zf}zllj — 1, one has

(% ZioAy;) = ZiAm(x,y;);

D: K x K — RU{—oo,+co} is a mapping satisfying the following conditions:
(iv) ©(x,x) =0forall x € K,
(v) forall y € K, ®(-,y) is upper semicontinuous,
(vi) forall x € K, ®(x,-) is convex;
YK x K— RU{—co,+oo} is a mapping satisfying the following conditions:
(vii) ¥(x,x) =0 forall x € K,
(viii) for all y € K, W(-,y) is concave,
(ix) for all x € K, we have limsup,,_,.. ¥ (x,y,) > ¥(x,y) as y, = y;
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F : K — B” is strongly-weakly* closed and quasi*-compact.

Then, there exists x € K and x* € F(x) such that
&7, n(x,y)) +@(x,y) > ¥(y,x), Vy € K. (5.3)

Furthermore, if ¥ is maximal monotone then problem (5.2) has at least one solution.

Motivated by the wide applicability of the Brézis pseudomonotonicity and the pa-
pers by Liu, Migorski and Zeng [79] and Chadli et al. [36], very recently Sahu et
al. [38] defined the following mixed equilibrium problems involving a set-valued
mapping in a general setting vector spaces in duality. Let X be a topological vec-
tor space over R and Y be a real vector space. Let (-,-) : ¥ x X — R be a bilinear
form. Suppose that the vector spaces X and Y and the bilinear form (-, -) are such that
the family of linear functions {(-,x) }.ex separates the points of Y. Further, suppose
that the vector space Y is endowed with the topology (Y, X) generated by the fam-
ily {V(x,€) : x € X and € > 0} as a basis of the neighbourhood system at 0, where
V(x,€):={y €Y :|(yx)| <€e}. By Aliprantis and Border [80, page 48], the vec-
tor space Y endowed with the topology o(Y,X) is a Hausdorff topological vector
space as the family of linear functions {{-,x)},cx separates the points of Y. Let K
be a nonempty closed and convex subset of X, ®,¥ : K x K — R be two real-valued
bifunctions and F : K = Y be a set-valued mapping. Then the mixed equilibrium
problem defined by Sahu et al. [38] is as the following:

Find x € K and @ € F(x) such that
(@,y—x) +®(x,y) +¥(x,y) >0, forall y € K.

Three solutions concepts of the problem (5.4) are defined below.

(5.4)

Definition 5.3. An element x € K is called,

(1) strong solution of the problem (5.4) if and only if,
(@,y—x) +P(x,y) +¥P(x,y) >0, forall y e K and all @ € F(x).
(ii) solution of the problem (5.4) if and only if, there exists @ € F(x) such that

(@,y—x)+P(x,y) +¥(x,y) >0, forall y € K.
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(i) weak solution of the problem (5.4) if and only if, for each y € K, there exists
@ € F(x) such that

<@-,)’ _x> +(D(x.~y) +‘P(X=y) 2 0.

Theorem 5.3. [38] Let X be a Hausdorff topological vector space, K be a nonempty
closed and convex subset of X, and Y be a vector space endowed with the topology
o (Y,X) such that for each y €Y, the function x — (y,x) is continuous. Let O,V :
K x K — R be real-valued bifunctions such that ®(x,x) = W(x,x) =0 for all x € K,
F : K ==Y be a set-valued mapping such that F is closed with respect to Y endowed
with the topology o(Y,X ) and quasi-o (Y, X )-compact, i.e. for any relatively compact
set M C X, F(M) is relatively compact with respect to the topology o(Y,X) of Y.
Furthermore, suppose that
(1) P is monotone;

(11) W is B-pseudomonotone;

(iii) P(x,-) and ¥(x,-) are convex functions;

(iv) D(x,-) is lower semicontinuous;

(v) Foreachy e K, Y(-,y) is upper semicontinuous on co(Z) and ®(-,y) is con-

tinuous on co(Z), for each Z € % (K);
(vi) There exists a nonempty compact set D C K and a nonempty compact convex

subset C C K, such that for each x € K \ D, there exists z € C satisfying
(@,7—x) +¥(x,z) < P(z,x), for each ©® € F(x).
Then the problem (5.4) has at least a weak solution x € K. Moreover, if F(x) is
convex, then x is a solution of (5.4).
Corollary 5.1. [38] If the B-pseudomonotonicity assumption on the bifunction ¥ in
Theorem 5.3 is replaced by the following weaker assumption

(i) If for any generalized sequence {xq }ucr satisfying {xq }acr stays in a com-

pact set and converges to x and liminf\W(xy,x) > 0, its limit x satisfies

W(x,z) > liminf¥(xy,z), forall z € K.
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Then the conclusion of Theorem 5.3 is also true.

The following notion of pseudomonotonicity defined by Wangkeeree et al. [81]
and Liu et al. [79] will be needed to establish strong solutions of the problem (5.4) in

Banach spaces.

Definition 5.4. Let F : K = B* be a set-valued mapping and ¥,® : K x K — R be

two bifunctions. Then F' is said to be

(i) (W,®)-pseudomonotone, if for each x,y € K
&y —x) +¥(x,y) = P, x) = ",y —x) +¥(x,5) = B(y,x),

for all x* € F(x) and y* € F(y).
(ii) stably (W, ®)-pseudomonotone with respect to a set U C B*, if F(-) — @ is
(W, ®)-pseudomonotone for every @ € U.

Theorem 5.4. [38] Let B be a reflexive Banach space and K be a nonempty closed
and convex subset of B. Let ®,¥ : K x K — R be two bifunctions satisfying ®(x,x) =
Y(x,x) =0forall x € K and F : K = B* be a set-valued mapping such that for any
Z € ¥ (K), the restriction of F to co(Z) is Ls.c. with respect to the weak”-topology
of B*. Suppose that

(1) @ is monotone;
(i1) W is B-pseudomonotone with respect to the weak topology;
(iii) For each x € K, the functions ®(x,-) and ¥ (x,-) are convex;
(iv) Foreachy € K, W(-,y) is upper semicontinuous on co(Z) and ®(-,y) is con-
tinuous on co(Z), for each Z € .7 (K);
(V) For each x € K, the functions ®(x,-) is lower semicontinuous;
(vi) F is (W, ®)-pseudomonotone;
(vii) (Coercivity) There exists a nonempty weakly compact subset D and a weakly

compact convex subset B of K such that for each x € K \ D, there exists x* €
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F(x) and y € B satisfying
<x*?y_x> —|—‘-P(x’},) < cD(ny)

Then the problem (5.4) has at least one strong solution.

Recently, Sahu et al [38] studied the existence of solutions for quasi-hemivariational
inequalities involving a set-valued mapping. The problem considered is described as
follows. Let B be a Banach space with its dual B*, K be a nonempty, closed and con-
vex subset of B and F : K = B* be a set-valued mapping. Let Q  R" be a bounded
open set, T : X — LP(Q;R¥) a linear continuous mapping, where 1 < p < 40, k € N*
and j : Q x R* — R a mapping which is locally Lipschitz with respect to the second
argument. Let us denote by £ := 7'x and by j%(s,r;v) the Clarke’s generalized direc-
tional derivative of j(s,-) at the point € R¥ in the direction v € R¥, where s € Q.
Let ®: K x K — IR be a real-valued bifunction satisfying the equilibrium condition
O(x,x) =0 for all x € K, and # : K — R is a given nonnegative functional. Then
the quasi-hemivariational inequality considered by Sahu et al [38] is defined as the
following:

Find x € K and x* € F(x) such that
{ (x*,y—x) +0O(x,y) —i—h(x)/ (5, £(5);9(s) — £(s))ds > 0, forall y € K.
. (5.5)
The following assumptions are considered on the functional j : Q x RF — R:
[H1] The function s € Q +— j(s,z) is measurable, for all z € R*:
[H2] There exists T € L9(Q,R), where ¢ is the conjugate exponent of p, such that

i(s,21) = j(5,22)| < T(8)|z1 — 22|, Vs € Q, Vz1,22 € R
[H3] The mapping z € R¥ + j(s,7) is locally Lipschitz, for all s € Q;
[H4] There exists a constant ¢ > 0 such that

€| € e(1+|z/P71), Vs € Q, YE € dj(s,2).

Theorem 5.5. [38] Let K be a nonempty closed and convex subset of a real Banach

space B with topological dual space B*. Let © : K x K — R be a bifunction such that
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O(x,x) =0 forall x € K. Let T : B — LP(Q;R¥) be a linear continuous mapping,
where | < p < +oo, k € N* and Q is a bounded open subset in RN, and h : B — R is
a continuous nonnegative functional. Let F : K = B* be a set-valued mapping which
is closed with respect to B* endowed with the topology c(B*,B) and quasi-c(B*,B)
compact. Let J : LP(Q;R¥) — R be a functional defined by J(x) = [q j(s,x(s))ds,
where j satisfies either [H1] and [H2], or, [H1] and [H3]-[H4]. Furthermore, sup-

pose that

(1) O is B-pseudomonotone with respect to the strong topology of B, and convex
with respect to the second argument;
(ii) Forall Z € 7 (K) and fixed y € K, O(-,y) is u.s.c. on co(Z);
(iii) There exists a nonempty compact set D C K and a nonempty compact convex
subset C C K, such that for all x € K \ D, there exists z € C satisfying
é31;1() J(’g’ ,2—X) +0O(x,2) + h(x)J°(£;2—%) < 0.
EF (x

Then the problem (5.5) has at least one solution.

Theorem 5.6. [38] Let K be a nonempty closed and convex subset of a real reflexive
Banach space B with topological dual space B*. Let ® : K x K — R be a bifunction
such that ©(x,x) =0 for all x € K. Let T : B — L”(Q:R¥) be a linear compact
operator, where 1 < p < 4o, k € N* and Q is a bounded open subset in RY. and
h:B — R be a nonnegative functional. Let F : K = B* be a set-valued mapping such
that F is a set-valued mapping such that for any Z € 7 (K), the restriction of F to
co(Z) is Ls.c. with respect to the weak*-topology of B*. Let J : LP(Q;RF) — R be a
functional defined by J(x) = [q, j(s,x(s))ds, where j satisfies either [H1] and [H2],
or, [H1] and [H3]-[H4]. Furthermore, suppose that
(i) © is B-pseudomonotone with respect to the weak topology of B,
(i) Forall x € K, O(x,-) is convex;
(iii) Forall Z € % (K) and fixed y € K, ©O(-,y) is u.s.c. on co(Z);

(vi) h: K — R is weakly continuous;
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(v) F is stably ®-pseudomonotone with respect to the subset U(h,J,T) defined
by
Uh,J,T)={—-h(x)@; :x € K and B; =T"@,},
where T* : L4(S;RY) — X* be the adjoint operator of T, i.e. (Tx,y) =
(x,T*y) for all x € B and y € L1(Q;R¥);
(vi) There exists a nonempty weakly compact set D C K and a nonempty weakly
compact convex subset C C K, such that for all x € K \ D, there exists z € C

satisfying

sup (E,z—x)+0O(x,2)+h(x)J°(#2—%) <0.
EeF(x)

Then the problem (5.5) has at least one strong solution.
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