Volume 39, No.01-02, 2020, 61-75

On Sequence Spaces and Some Matrix Transformations

by

Rabia Savaş
Department of Mathematics, Sakarya University, Sakarya, Turkey
e-mail : rabiasavass@hotmail.com

Abstract

The goal of this paper is to characterize the matrix transformations and is related to the concept of invariant mean and the lacunary sequence.

Key words: lacunary sequence, sequence space, invariant means, matrix transformations.

AMS Classification: 40F02, 40G06

1. Introduction and Preliminaries

We shall write w for the set of all complex sequences $x=\left(x_{k}\right)_{k=0}^{\infty}$. Let ϕ, l_{∞}, c and c_{0} denote the sets of all finite, bounded, convergent and null sequences respectively. We write $l_{p}=\left\{x \in w: \sum_{0}^{\infty}\left|x_{p}\right|<\infty\right\}$ for $1 \leq p<\infty$. We denote the sequences $e=(1,1,1, \ldots .$.$) and e^{n}=(0,0,0, \ldots, 1$ (nthplace), $0, \ldots)$. For any sequence $x=\left(x_{k}\right)_{k=0}^{\infty}$, we denote the n-section by $x^{[n]}=\sum_{k=0}^{n} x_{k} e^{(k)}$. Note that l_{∞}, c and c_{0} Banach spaces with the sup-norm $\|x\|_{\infty}=\sup _{k}\left|x_{k}\right|$, and $l^{p}(1 \leq p<\infty)$ are Banach spaces with the norm $\|x\|_{p}=\left(\sum\left|x_{k}\right|^{p}\right)^{1 / p}$; while ϕ is not a Banach space with respect to any norm.

Schaefer [25] has defined the concepts of σ-conservative, σ-regular and σ coercive matrices and characterized matrix classes $\left(c, V_{\sigma}\right),\left(c, V_{\sigma}\right)_{r e g}$ and $\left(l_{\infty}, V_{\sigma}\right)$, where V_{σ} denote the set of all bounded sequences all of whose invariant means
(or σ-means) are equal. Recently, in [9] and [10], Mursaleen characterized some matrix classes by using de la Valée-poussin and invariant mean. Matrix transformations between sequence spaces have been discussed by Savaş and Mursaleen [23], Başarir and Savaş [2], Nanda [12], Nanda and Bilgin [13], Vatan [5], Vatan and Simşek [6], Savaş ([16], [17], [18], [19], [20],[21]) and many others.

Let σ be a mapping of the set of positive integers into itself. A continuous linear functional ϕ on l_{∞}, the space of real bounded sequences, is said to be an invariant mean or a σ-mean if and only if $(1) \phi(x) \geq 0$ when the sequence $x=$ $\left(x_{n}\right)$ has $x_{n} \geq 0$ for all n, (2) $\phi(e)=1$, where $e=(1,1, \ldots)$ and (3) $\phi(x(\sigma(n)))=$ $\phi(x)$ for all $x \in l_{\infty}$. Throughout the paper, for typographical convenience we shall use the notation $x(\sigma(n)))$ to denote $x_{\sigma}(n)$.
The mappings σ are one-to-one and such that $\sigma^{m}(n) \neq n$, for all positive integers n and m, where $\sigma^{m}(n)$ denotes the m th iterate of the mappings σ at n. Thus σ-extends the limit functional on c, the space of convergent sequences, in the sense that $\phi(x)=\lim x$ for all $x \in c$. Consequently, $c \subset V_{\sigma}$ where V_{σ} is the set of bounded sequence all of whose σ-means are equal.
In case σ is the translation mapping $n \rightarrow n+1$, a σ-mean is often called a Banach limit (see, [1]) and V_{σ} is the set of almost convergent sequences. If $x=\left(x_{n}\right)$, set $T x=\left(T x_{n}\right)=(x(\sigma(n)))$. It can be shown(see, [25])

$$
\begin{equation*}
V_{\sigma}=\left\{x \in l_{\infty}: \lim _{m} t_{m n}(x)=L, \quad \text { uniformly } \quad \text { in } \quad n, \quad L=\sigma-\lim x\right\} \ldots \tag{1.1}
\end{equation*}
$$

where

$$
t_{m n}(x)=\frac{1}{m+1} \sum_{k=0}^{m} x\left(\sigma^{k}(n)\right)
$$

and $t_{-1}, n(x)=0$.
The special case of (1.1) in which $\sigma(n)=n+1$ was given by Lorentz [7].

By a lacunary $\theta=\left(k_{r}\right) ; r=0,1,2, \ldots$ where $k_{0}=0$, we shall mean an increasing sequence of non-negative integers with $k_{r}-k_{r-1} \rightarrow \infty$ as $r \rightarrow \infty$. The intervals determined by θ will be denoted by $I_{r}=\left(k_{r-1}, k_{r}\right]$ and $h_{r}=$ $k_{r}-k_{r-1}$. The ratio $\frac{k_{r}}{k_{r-1}}$ will be denoted by q_{r}. Freedman at al [4] defined the space of lacunary strongly convergent sequences N_{θ} as follows:

$$
\left.N_{\theta}=\left\{x=\left(x_{k}\right): \lim _{r} \frac{1}{h_{r}} \sum_{k \in I_{r}}\left|x_{k}-l e\right|\right)=0, \text { for some } l\right\} .
$$

There is a strong connection between N_{θ} and the space w of strongly Cesàro summable sequences which is defined by Maddox [8] as follows;

$$
\left.w=\left\{x=\left(x_{k}\right): \lim _{n} \frac{1}{n} \sum_{k=0}^{n}\left|x_{k}-l e\right|\right)=0, \text { for some } l\right\} .
$$

In the special case where $\theta=\left(2^{r}\right)$, we have $N_{\theta}=\sigma$.
Quite recently, concept of lacunary σ-convergent was introduced and studied by Savas [22] which is a generalization of the idea of lacunary almost convergence due to Das and Mishra [3]. If $x \in V_{\sigma}^{\theta}$ denotes the set of all lacunary σ-convergent sequences, then Savas [22] defined
$V_{\sigma}^{\theta}=\left\{x=\left(x_{k}\right): \lim _{r} \frac{1}{h_{r}} \sum_{k \in I_{r}}\left(x\left(\sigma^{k}(n)\right)\right)-L\right)=0$, for some L, uniformly in $\left.n\right\}$.

Note that for $\sigma(n)=n+1$, the space V_{σ}^{θ} is the same as $A C_{\theta}$. We write $V_{\sigma}^{\theta}=V_{\sigma_{0}}^{\theta}$ whenever $L=0$.Then,

$$
V_{\sigma}^{\infty}(\theta):=\left\{x \in l_{\infty}: \sup _{r, n} \mid t_{r n}(x) \leq \infty\right\},
$$

where

$$
t_{n r}(x)=\frac{1}{h_{r}} \sum_{k \in I_{r}} x\left(\sigma^{k}(n)\right) .
$$

If $\theta=2^{r}$ and $\sigma(n)=n+1$, then $V_{\sigma}^{\infty}(\theta)$ is reduced to the set f_{∞} defined by Nanda [11].

Just as boundedness is related to convergence, it is quite natural to expect that the sequence space $V_{\sigma}^{\infty}(\theta)$ is related to $\sigma-$ convergence. But we observe that this concept coincide with l_{∞}. To prove this let $x \in V_{\sigma}^{\infty}(\theta)$. Then there is a constant $M>0$ such that

$$
\frac{1}{h_{1}} \left\lvert\, x\left(\left.\sigma^{1}(n)\left|\leq \sup _{r, n} \frac{1}{h_{r}} \sum_{k \in I_{r}}\right| x\left(\sigma^{k}(n)\right) \right\rvert\, \leq M\right.\right.
$$

for all n and so $x \in l_{\infty}$. Conversely, let $x \in l_{\infty}$. Then there is a constant $M>0$ such that $\left|x_{j}\right| \leq M$ for all j and so

$$
\frac{1}{h_{r}} \sum_{k \in I_{r}}\left|x\left(\sigma^{k}(n)\right)\right| \leq M \frac{1}{h_{r}} \sum_{k \in I_{r}} 1 \leq M
$$

for all r and n and so $x \in V_{\sigma}^{\infty}(\theta)$. Therefore $V_{\sigma}^{\infty}(\theta)=l_{\infty}$.
The space $V_{\sigma}(\theta)$ is BK spaces with the norm $\|x\|=\sup _{r, n}\left|t_{r n}(x)\right|$. In this paper we characterize matrix classes by using lacunary sequence space such as $\left(l_{p}, V_{\sigma}^{\infty}(\theta)\right)$ and $\left(l_{p}, V_{\sigma}(\theta)\right)$.

2. Main Results

Let X and Y be two sequence spaces, $B=\left(b_{n k}\right)_{n ; k=1}^{\infty}$ be an infinite matrix of real or complex numbers and $B_{n}=\left(b_{n k}\right)_{k=1}^{\infty}$ be the sequence in the n-th row of B. We write $B x=B_{n}(x)$, where $B_{n}(x)=\sum_{k} b_{n k} x_{k}$ provided that the series on the right converges for each n. If $x=\left(x_{k}\right) \in X$, implies that $B x \in Y$, then we say that A defines a matrix transformation from X into Y and by (X, Y) we denote the class of such matrices, that is, $B \in(X, Y)$ if and
only if $B_{n} \in X^{\beta}$ for all n and $B x \in Y$ for all $x \in X$.
Let $B x$ be defined. Then, for all r, n, we write

$$
t_{n r}(B x)=\sum_{k=1}^{\infty} t(n, k, r) x_{k}
$$

where

$$
t(n, k, r)=\frac{1}{h_{r}} \sum_{i \in I_{r}} b\left(\sigma^{i}(n), k\right),
$$

and $b(n, k)$ denotes the element $b_{n k}$ of the matrix B.

Let $X(p)$ denote the set of all sequences $x=\left(x_{k}\right)$ such that the following norms are finite:

$$
\|x\|_{X(p)}=\left\{\sum_{s=0}^{\infty}\left|x_{s}^{\prime}\right|^{p}\right\}^{1 / p}, \text { for } 1 \leq p<\infty
$$

and

$$
\|x\|_{X(\infty)}=\sup \left\{\left|x_{s}^{\prime}\right| ; s \geq 0\right\}
$$

where

$$
x_{s}^{\prime}=2^{-s} \sup \left\{\left|\sum_{i=2^{s}}^{k} x_{i}\right| ; 2^{s} \leq k<2^{s+1}\right\}
$$

To simplify our presentation we shall confine ourselves to $1<p<\infty$.
Next let $Y(q)$ denote the set of all sequences $y=\left(y_{k}\right)$ such that the following norms are finite;

$$
\|x\|_{Y(q)}=\left\{\sum_{s=0}^{\infty}\left|y_{s}^{\prime}\right|^{q}\right\}^{1 / q}, \text { for } 1<q<\infty
$$

where

$$
y_{s}^{\prime}=2^{s}\left\{\sum_{2^{s}=k<2^{s+1}-1}\left|y_{k}-y_{k+1}\right|+\left|y_{2^{s+1}-1}\right|\right\}
$$

The cases where $q=1$ and $q=\infty$ are similar. In what follows we shall always assume $\frac{1}{p}+\frac{1}{q}=1$

We now obtain the following theorem
Theorem 2.1. $A \in\left(X(p), V_{\sigma}(\theta)\right)$ if and only if
(i) $M=\sup \left\{\left\|b(n, k, r)_{k \geq 1}\right\|_{Y(q)} ; m \geq 1\right\}<\infty$, and
(ii) $\lim _{r} b(n, k, r)=\alpha_{k}$ uniformly in n, (k fixed)

Proof. The necessity is open. To prove the sufficiency given $x \in X(p)$ we want to show that $A x$ belongs to $V_{\sigma}(\theta)$. First we observe that $\alpha=\left(\alpha_{k}\right) \in Y(q)$ and $\|\alpha\|_{Y(q)} \leq M$ where M is the constant. Since $x \in X(p)$ for any given $\varepsilon>0$, we can choose r_{0} such that

$$
\left\{\sum_{s=s_{0}+1}^{\infty}\left|x_{s}^{\prime}\right|^{p}\right\}^{1 / p}<\frac{\varepsilon}{4 M} .
$$

Then we can find that for sufficiently large n

$$
\begin{aligned}
\left|\sum_{k=1}^{\infty}\left(b(n, k, r)-\alpha_{k}\right) x_{k}\right| & \\
& \leq\left|\sum_{s=0}^{\infty}\right| \sum_{s}\left(b(n, k, r)-\alpha_{k}\right) x_{k} \mid \\
& \leq \sum_{s=0}^{s_{0}}\left|\sum_{s}\left(b(n, k, r)-\alpha_{k}\right) x_{k}\right|+\sum_{s=s_{0}+1}^{\infty}\left|\sum_{s}\left(b(n, k, r)-\alpha_{k}\right) x_{k}\right| \\
& \leq \frac{\varepsilon}{2}+2 M \cdot \frac{\varepsilon}{4 M} \\
& =\varepsilon
\end{aligned}
$$

Hence the proof is completed.
Let us denote v the space of sequences of bounded variation, that is

$$
v=\left\{x: \sum_{k}\left|x_{k}-x_{k-1}\right|<\infty, x_{0}=0\right\}
$$

v is a Banach space normed by $\|x\|=\sum_{k}\left|x_{k}-x_{k-1}\right|$.
We have

Theorem 2.2. $A \in\left(v, V_{\sigma}(\theta)\right.$ if and only if
(i)

$$
M=\sup _{r}\left|\sum_{k=t}^{\infty} b(n, k, r)\right|<\infty, t, n=1,2, \ldots
$$

(ii) there exists an $\alpha \in C$ such that

$$
\lim _{n} \sum_{k} b(n, k, r)=\alpha,
$$

uniformly in n,
and
(iii) there exists an $\alpha_{k} \in \boldsymbol{C}(k=0,1,2, \ldots)$ such that

$$
\lim _{r} b(n, k, r)=\alpha_{k},
$$

uniformly in n.

Proof. Suppose that $B \in\left(v, V_{\sigma}(\theta)\right)$. This implies that $B x \in V_{\sigma}(\theta)$ for $x \in v$.
Since $V_{\sigma}(\theta) \subset \ell_{\infty}$,
$B x \in \ell_{\infty}$ and hence (i) holds. Define $e_{k}=(0,0, \ldots, 0,1$ (kth place), $0, \ldots)$ and $e=$ $(1,1, \ldots)$. Since e_{k} and e are in v, (ii) and (iii) must hold.

Conversely, suppose that the conditions (i) - (iii) hold and $x \in v$. Since $v \subset$ c , therefore $x_{k} \quad \rightarrow \ell$. Now

$$
\sum_{k}\left|b(n, k, r) x_{k}\right| \leq \quad \sum_{k}\left|x_{k}-x_{k-1}\right|\left|\sum_{k=1}^{t} b(n, k, r)\right|+\ell\left|\sum_{k} b(n, k, r)\right| .
$$

By (i) and (iii) we get for each r,

$$
\sup _{t}\left|\sum_{k=1}^{t} b(n, k, r)\right|<\infty
$$

Therefore $t_{n r}(B x)$ exists for each n and $x \in v$. Also $\sum \alpha_{k} x_{k}$ exists for each $x \in v$. For given $\varepsilon>0$, choose and fix $k_{0} \in Z^{+}$such that

$$
\sum_{k=k_{0}+1}\left|x_{k}-x_{k-1}\right|<\varepsilon / 4 M
$$

We have

$$
\left|t_{n r}(B x)-\sum_{k} \alpha_{k} x_{k}-\ell \sum_{k}\left(b(n, k, r)-\alpha_{k}\right)\right| \leq I_{1}+I_{2}
$$

where

$$
I_{1}=\sum_{k=1}^{k_{0}}\left|\sum_{k=1}^{t}\left(b(n, k, r)-\alpha_{k}\right)\right|\left|x_{k}-x_{k-1}\right|,
$$

and

$$
I_{2} \leq \sup _{t}\left|\sum_{k=1}^{t}\left(b(n, k, r)-\alpha_{k}\right)\right| \sum_{k=k_{0}+1}\left|x_{k}-x_{k-1}\right| .
$$

By virtue of condition (iii) there exists an integer $n_{o}>0$ such that $I_{1} \leq$ $\varepsilon / 2$ for $n \geq n_{o}$. Clearly $I_{2} \leq \varepsilon / 2$. Further by virtue of condition (ii) we have for $n \geq n_{o}$,

$$
\left|t_{n r}(B x)-\sum_{k} \alpha_{k} x_{k}-\ell\left(\alpha-\sum_{k} \alpha_{k}\right)\right| \leq \varepsilon,
$$

therefore we have uniformly in n,

$$
\lim _{r} t_{n r}(B x)=\ell \alpha+\sum_{k} \alpha_{k}\left(x_{k}-\ell\right),
$$

so that $B x \in V_{\sigma}(\theta)$ and this completes proof.
We write $\left(v, V_{\sigma}(\theta), P\right)$ to denote the subset of $\left(v, V_{\sigma}(\theta)\right)$ such that A is almost lacunary convergent to the limit of x in v.

We know consider the class $\left(v, V_{\sigma}(\theta), P\right)$.
Theorem 2.3. $A \in\left(v, V_{\sigma}(\theta), P\right)$ if and only if
(iv) the condition (i) of Theorem 2.2 holds
(v) $\lim _{r} \sum_{k} b(n, k, r)=1$, uniformly in n,
and
(vi) $\lim _{r} b(n, k, r)=0$, for each k uniformly in n.

Proof. Let $B \in\left(v, V_{\sigma}(\theta), P\right)$. Then conditions hold by theorem 2.2. Let the conditions (i)-(iii) hold. Then by Theorem 2.2., $B \in\left(v, V_{\sigma}(\theta)\right)$ and

$$
\lim _{r} \sum_{k} b(n, k, r) x_{k}=\ell
$$

uniformly in n.
This completes the proof.
The following sequence space has been defined in [15].

Let $X_{p}(1 \leq p<\infty)$ be the space of all $x \in X$ with

$$
\|x\|_{p}=\left(\sum_{n=1}^{\infty}\left|\frac{1}{n} \sum_{k=1}^{n} x_{k}\right|^{p}\right)^{1 / p}
$$

for $1 \leq p<\infty$.

It is easy to see that $X_{p}(1 \leq p<\infty)$ is a Banach space of nonabsolute type and the above norm is saturated except for $p=1,($ see, [15]).
Let Y_{q} be the space of all $y \in \mathrm{Y}$ such that
(a) $\left|k y_{k}\right| \leq M$ for all $k=1,2, \ldots$
(b) $\alpha_{q}(y)=\left(\sum_{k=1}^{\infty}\left|k\left(y_{k}-y_{k+1}\right)\right|^{q}\right)^{1 / q}<\infty$ for $1 \leq q<\infty$ and $\quad \alpha_{\infty}(y)=\sup \left\{\left|k\left(y_{k}-y_{k+1}\right)\right| ; k=1,2, \ldots\right\}<\infty$.

The following theorem is due to $\mathrm{Ng}[14]$.
Theorem 2.4. The associate space $X_{p^{\prime}}$ of X_{p} is the space Y_{q} with the norm α_{q}, where $\frac{1}{p}+\frac{1}{q}=1$.

We need the following lemma is due to [15] for the proof of the next theorem.
Lemma 2.1. A matrix A transforms a $B K$ - space E into a $B K$ - space F then the transformation is linear and continuous.

We now have

Theorem 2.5. An infinite matrix $B \in\left(X_{p}, V_{\sigma}(\theta)\right)$ if and only if B satisfies the following conditions:
(i) $\sup _{n r}\left\|\{k(b(n, k, r)-b(n, k+1, r))\}_{k \geq 1}\right\|_{q}<\infty$,
(ii) $\sup _{k}|k b(n, k, r)|<\infty$ for every fixed n, r,
(iii) $\lim _{r} k(b(n, k, r)-b(n, k+1, r))=\delta_{k}$, uniformly in n, for every fixed k,
where $\frac{1}{p}+\frac{1}{q}=1$.
Proof. First we prove that the conditions are necessary . Suppose $B=\left(b_{n k}\right)$ maps X_{p} into $V_{\sigma}(\theta)$, then the series

$$
t_{n r}(B x)=\sum_{k=1}^{\infty} b(n, k, r) x_{k}
$$

is convergent for every n, r and for every $x \in X_{p}$. Then Theorem 2.4 the sequence $(b(n, k, r))_{k}$ is an element in Y_{q} for every n, r. It follows that the condition (ii) holds and

$$
\left\|\{k(b(n, k, r)-b(n, k+1, r))\}_{k \geq 1}\right\|<\infty .
$$

Since X_{p} and $V_{\sigma}(\theta)$ are BK-spaces therefore by Lemma 2.1, we have

$$
\left\|t_{n r}(B x)\right\| \leq K\|x\|_{p}
$$

for some real constant K, and all $x \in X_{p}$ or

$$
\sup _{n r}\left|t_{n, r}(B x)\right| \leq K\|s\|
$$

for all $x \in X_{p}$ with $s=\left(s_{k}\right)$ where

$$
s_{k}=\frac{1}{k} \sum_{i=1}^{k} x_{i} .
$$

It follows that

$$
\sup _{n r}\left|\frac{\sum_{k=1}^{\infty} k(b(n, k, r)-b(n, k+1, r)) s_{k}}{\|s\|}\right| \leq K .
$$

Hence we have

$$
\sup _{n, r}\left\|\{k(b(n, k, r)-b(n, k+1, r))\}_{k \geq 1}\right\| \leq K .
$$

Therefore the condition (i) holds. To prove the condition (iii) is necessary . We take for each fixed k, a sequence $x^{(k)}$ in X_{p} with $x_{j}^{(k)}=k$, if $j=k,-k$ if $j=k+1,=0$, if $j \neq k, k+1$. Then we see that

$$
s_{k}=\frac{1}{k} \sum_{k=1}^{k} x_{j}^{(k)}=1
$$

and $s_{j}=0$ if $j \neq k$. For this $x^{(k)}$ we have,

$$
\begin{aligned}
t_{r n}\left(B x^{(k)}\right)=\sum_{j=1}^{\infty} b(n, j, r) x_{j}^{(k)} & =\sum_{j=1}^{\infty} j(b(n, j, r)-b(n, j+1, r)) s_{j} \\
& =k\left(b(n, k, r)-\left(b(n, k+1, r) \rightarrow \delta_{k}\right.\right.
\end{aligned}
$$

as $r \rightarrow \infty$, uniformly in r. This shows that condition (ii) is necessary.
Conversely, suppose the conditions (i), (ii) and (iii) hold. Then by conditions (i) and (ii) the series

$$
t_{r n}(B x)=\sum_{k=1}^{\infty} b(n, k, r) x_{k}
$$

is convergent for every n, r and $x \in X_{p}$. By the condition (iii) we have

$$
|k(b(n, k, r)-b(n, k+1, r))|^{q} \rightarrow \|\left.\delta_{k}\right|^{q}
$$

as $r \rightarrow \infty$ uniformly in n and since for every positive integer p

$$
\left\{\sum_{k=1}^{p}|k(b(n, k, r)-b(n, k+1, r))|^{q}\right\}^{1 / q} \leq \sup _{n r}\left\{\sum_{k=1}^{\infty}|k(b(n, k, r)-b(n, k+1, r))|^{q}\right\}^{1 / q}=\beta
$$

by letting $r \rightarrow \infty$ we get

$$
\left\{\sum_{k=1}^{p}\left|\delta_{k}\right|^{q}\right\}^{1 / q} \leq \sup _{r, n}\left\{\sum_{k=1}^{p}|k(b(n, k, r)-b(n, k+1, r))|^{q}\right\}^{1 / q}
$$

Since this true for every positive integer p, it follows that

$$
\left\{\sum_{k=1}^{p}\left|\delta_{k}\right|^{q}\right\}^{1 / q}<\infty
$$

Now for every sequence $x \in X_{p}$, we have

$$
s_{n}=\frac{1}{n} \sum_{k=1}^{n} x_{k}
$$

as $n \rightarrow \infty$. Given any $\varepsilon>0$, there exists $N>0$ such that

$$
\left\{\sum_{k=N}^{\infty}\left|s_{k}\right|^{p}\right\}^{1 / p}<\frac{\varepsilon}{4 \beta} .
$$

And by condition (iii) there exists integer N_{1} such that

$$
\left|\sum_{k=1}^{N}\left\{k\left(b(n, k, r)-b(n, k+1, r)-\delta_{k}\right)\right\} s_{k}\right|<\frac{\varepsilon}{2},
$$

for all $r>N_{1}$. Now for all $r>N_{1}$,

$$
\begin{aligned}
&\left|\sum_{k=1}^{\infty}\left\{k\left(b(n, k, r)-b(n, k+1, r)-\delta_{k}\right)\right\} s_{k}\right| \leq\left|\sum_{k=1}^{N}\left\{k\left(b(n, k, r)-b(n, k+1, r)-\delta_{k}\right)\right\} s_{k}\right| \\
&+\mid \sum_{k=N+1}^{\infty}\left\{k\left(\left(b(n, k, r)-b(n, k+1, r)-\delta_{k}\right)\right\} s_{k} \mid\right. \\
&<\frac{\varepsilon}{2}+\left(\sum_{k=N+1}^{\infty}\left\{\left|k\left(b(n, k, r)-b(n, k+1, r)|+| \delta_{k}\right)\right|\right\}^{q}\right)^{1 / q} \times\left(\sum_{k=N+1}^{\infty}\left|s_{k}\right|^{p}\right)^{1 / p} \\
&<\frac{\varepsilon}{2}+2 \beta \frac{\varepsilon}{4 \beta}=\varepsilon
\end{aligned}
$$

So we have

$$
\lim _{r} \sum_{k=1}^{\infty} k\left(b(n, k, r)-b(n, k+1, r)-\delta_{k}\right) s_{k}=\sum_{k=1}^{\infty} \delta_{k} s_{k}
$$

uniformly in n. It follows that

$$
\begin{aligned}
\lim _{r} t_{n r}(B x) & =\lim _{r} \sum_{k=1}^{\infty} b(n, k, r) x_{k} \\
& =\lim _{r} \sum_{k=1}^{\infty} k(b(n, k, r)-b(n, k+1, r)) s_{k} \\
& =\sum_{k=1}^{\infty} \delta_{k} s_{k}
\end{aligned}
$$

uniformly in n. This show that $B x \in V_{\sigma}(\theta)$ and $B=\left(b_{n k}\right)$ maps $X_{p},(1 \leq p<$ $\infty)$ into $V_{\sigma}(\theta)$. This completes the proof.

Corollary 2.1. A matrix transformation $B=\left(b_{n k}\right)$ maps the space X_{p} into the space $V_{\sigma}(\theta)_{0}$ if and only if
(i) the conditions (i) and (ii) of Theorem 2.5 hold, b (ii) $\lim _{r} k(b(n, k, r)-$ $b(n, k+1, r))=0$, uniformly in n, for every fixed k, where $\frac{1}{p}+\frac{1}{q}=1$.

Acknowledgement: The author is sincerely grateful to the referee and to Prof. S. Nanda for their valuable suggestions which improved the presentation of the paper.

References

[1] S. Banach, Théorie des Opérations lieaires, Chelsea Publ. Co., New York, 1955.
[2] M. Basarir and E. Savas, On matrix transformations of some generalized sequence space. Math. Slovaca 45 (1995), no. 2, 155-162.
[3] G. Das and S. K. Mishra , Banach limits and lacunary strong almost convergence, J. Orissa Math. Soc. 2(2), (1983), 61-70.
[4] A. R. Freedman, J. J. Sember, M. Rapnael, Some Cesaro type summability spaces, Proc. London. Math. Soc., 37 (1978), 508-520.
[5] V. Karakaya, θ_{σ}-summable sequences and some matrix transformations, Tamkang J. Math. 35(4)(2004), 313-320.
[6] V. Karakaya and N. Şimşek, On some matrix transformations. Int. Math. J. 4 (2003), no. 1, 1925.
[7] G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math., 80(1948), 167-190.
[8] I.J. Maddox, Spaces of strongly summable sequences, Quart. J. Math., 18 (1967), 345 355.
[9] M. Mursaleen, A new sequence space of invariant mean and some matrix transformations, J. Orissa Math. Soc., 27(2008), 13-20.
[10] M. Mursaleen, Sequence spaces of invariant means and some matrix transformations Conference Paper in Hacettepe University Bulletin of Natural Sciences and Engineering Series B: Mathematics and Statistics, July 2010.
[11] S. Nanda, Matrix transformations and almost boundedness, Glasnik Matematicki, 14(34)(1979), 99-107.
[12] S. Nanda, Some sequence spaces, Math. Student,21(1980),351-356.
[13] S. Nanda and T. Bilgin, σ - continuity and absolute almost convergence, Pan. American Math. Journal.29(2) (2019),75-83.
[14] Ng Peng Nung, Matrix transformations on a pair of Mutually associate spaces of a nonabsolutely type, Tamkang Jour. Math. 18(3) (1987),69-73.
[15] NgPeng-Nung and Peng Yee Lee, Cesaro sequence spaces of nonabsolute type, Comm. Math. Prace. Math. 20(2) (1977/78),193-197.
[16] E. Savaş, Matrix transformations of some generalized sequence spaces. J. Orissa Math. Soc. 4 (1) (1985), 37-51.
[17] E. Savaş, Matrix transformations and absolute almost convergence. Bull. Inst. Math. Acad. Sinica 15(3) (1987), 345-355.
[18] E. Savaş, Matrix transformations between some new sequence spaces. Tamkang J. Math. 19(4) (1988), 75-80.
[19] E. Savaş, σ-summable sequences and matrix transformations. Chinese J. Math. 18(3) (1990), 201-207.
[20] E. Savaş, Matrix transformations and almost convergence. Math. Student 59(1-4), (1991), 170-176.
[21] E. Savaş, Matrix transformations of X_{p} into C_{s}. Punjab Univ. J. Math. (Lahore) 24 (1991), 59-66.,
[22] E. Savaş, On lacunary strong σ-convergence, Indian J. Pure appl. Math. 21(4), (1990), 359-365.
[23] E. Savaş and Mursaleen, Matrix transformations in some sequence spaces, Istanbul Univ. Fen Fak. Mat. Derg. 52, (1993) 1-5.
[24] E. Savaş, On infinite matrices and almost λ - sequence spaces, Modern methods in Analysis and applications, 2010 Anamaya Publishers, New delhi, India, (2010),27-35.
[25] P. Schaefer, Infinite matrices and invariant means, Proc. Amer. Math. Soc., 36(1972), 104-110.
[26] K. Yosida, Functional Analysis (Springer-Verlag, Berlin Heidelberg New York, 1995.

