
Journal of the Orissa Mathematical Society ISSN:0975-2323

Volume 39, No.01-02, 2020, 61-75

On Sequence Spaces and Some Matrix Transformations

by

Rabia Savaş
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related to the concept of invariant mean and the lacunary sequence.
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1. Introduction and Preliminaries

We shall write w for the set of all complex sequences x = (xk)
∞
k=0. Let

φ, l∞, c and c0 denote the sets of all finite, bounded, convergent and null se-

quences respectively. We write lp = {x ∈ w :
∑∞

0 |xp| < ∞} for 1 ≤ p < ∞.

We denote the sequences e = (1, 1, 1, .....) and en = (0, 0, 0, ..., 1(nthplace), 0, ...).

For any sequence x = (xk)
∞
k=0, we denote the n-section by x[n] =

∑n
k=0 xke

(k).

Note that l∞, c and c0 Banach spaces with the sup-norm ||x||∞ = supk |xk|,
and lp(1 ≤ p < ∞) are Banach spaces with the norm ||x||p = (

∑
|xk|p)1/p;

while φ is not a Banach space with respect to any norm.

Schaefer [25] has defined the concepts of σ-conservative, σ-regular and σ-

coercive matrices and characterized matrix classes (c, Vσ), (c, Vσ)reg and (l∞, Vσ),

where Vσ denote the set of all bounded sequences all of whose invariant means
61



62 Rabia Savaş

(or σ-means) are equal. Recently, in [9] and [10], Mursaleen characterized

some matrix classes by using de la Valée-poussin and invariant mean. Ma-

trix transformations between sequence spaces have been discussed by Savaş

and Mursaleen [23], Başarir and Savaş [2], Nanda [12], Nanda and Bilgin [13],

Vatan [5], Vatan and Simşek [6], Savaş ([16], [17], [18], [19], [20],[21] ) and

many others.

Let σ be a mapping of the set of positive integers into itself. A continuous

linear functional φ on l∞, the space of real bounded sequences, is said to be an

invariant mean or a σ-mean if and only if (1)φ(x) ≥0 when the sequence x =

(xn) has xn ≥0 for all n, (2) φ(e)=1, where e=(1,1,...) and (3) φ(x(σ(n))) =

φ(x) for all x ∈ l∞. Throughout the paper, for typographical convenience we

shall use the notation x(σ(n))) to denote xσ(n).

The mappings σ are one-to-one and such that σm(n) 6= n, for all positive

integers n and m, where σm(n) denotes the mth iterate of the mappings σ at

n. Thus σ-extends the limit functional on c, the space of convergent sequences,

in the sense that φ(x) = limx for all x ∈ c. Consequently, c ⊂ Vσ where Vσ is

the set of bounded sequence all of whose σ-means are equal.

In case σ is the translation mapping n → n+1, a σ-mean is often called a

Banach limit (see, [1]) and Vσ is the set of almost convergent sequences.

If x = (xn), set Tx = (Txn) = (x(σ(n))). It can be shown(see, [25])

Vσ = {x ∈ l∞ : lim
m
tmn(x) = L, uniformly in n, L = σ − limx}...

(1.1)

where

tmn(x) =
1

m+ 1

m∑
k=0

x(σk(n)).
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and t−1, n(x) = 0.

The special case of (1.1) in which σ(n) = n+ 1 was given by Lorentz [7].

By a lacunary θ = (kr); r = 0, 1, 2, ... where k0 = 0, we shall mean an

increasing sequence of non-negative integers with kr − kr−1 → ∞ as r → ∞.

The intervals determined by θ will be denoted by Ir = (kr−1, kr] and hr =

kr − kr−1. The ratio kr
kr−1

will be denoted by qr. Freedman at al [4] defined

the space of lacunary strongly convergent sequences Nθ as follows:

Nθ =

x = (xk) : lim
r

1

hr

∑
k∈Ir

|xk − le|) = 0, for some l

 .

There is a strong connection between Nθ and the space w of strongly Cesàro

summable sequences which is defined by Maddox [8] as follows;

w =

{
x = (xk) : lim

n

1

n

n∑
k=0

|xk − le|) = 0, for some l

}
.

In the special case where θ = (2r), we have Nθ = σ.

Quite recently, concept of lacunary σ-convergent was introduced and studied

by Savas [22] which is a generalization of the idea of lacunary almost conver-

gence due to Das and Mishra [3]. If x ∈ V θ
σ denotes the set of all lacunary

σ-convergent sequences, then Savas [22] defined

V θ
σ =

x = (xk) : lim
r

1

hr

∑
k∈Ir

(x(σk(n)))− L) = 0, for someL, uniformly in n

 .

Note that for σ(n) = n + 1, the space V θ
σ is the same as ACθ. We write

V θ
σ = V θ

σ0 whenever L = 0.Then,

V∞σ (θ) := {x ∈ l∞ : sup
r,n
|trn(x) ≤ ∞},
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where

tnr(x) =
1

hr

∑
k∈Ir

x(σk(n)).

If θ = 2r and σ(n) = n + 1, then V∞σ (θ) is reduced to the set f∞ defined by

Nanda [11].

Just as boundedness is related to convergence, it is quite natural to expect

that the sequence space V∞σ (θ) is related to σ− convergence. But we observe

that this concept coincide with l∞. To prove this let x ∈ V∞σ (θ). Then there

is a constant M > 0 such that

1

h1
|x(σ1(n)| ≤ sup

r,n

1

hr

∑
k∈Ir

|x(σk(n))| ≤M

for all n and so x ∈ l∞. Conversely, let x ∈ l∞. Then there is a constant

M > 0 such that |xj | ≤M for all j and so

1

hr

∑
k∈Ir

|x(σk(n))| ≤M 1

hr

∑
k∈Ir

1 ≤M

for all r and n and so x ∈ V∞σ (θ). Therefore V∞σ (θ) = l∞.

The space Vσ(θ) is BK spaces with the norm ||x|| = supr,n |trn(x)|. In this

paper we characterize matrix classes by using lacunary sequence space such

as (lp, V
∞
σ (θ)) and (lp, Vσ(θ)).

2. Main Results

Let X and Y be two sequence spaces, B = (bnk)
∞
n;k=1 be an infinite matrix

of real or complex numbers and Bn = (bnk)
∞
k=1 be the sequence in the n-th

row of B. We write Bx = Bn(x), where Bn(x) =
∑

k bnkxk provided that

the series on the right converges for each n. If x = (xk) ∈ X, implies that

Bx ∈ Y , then we say that A defines a matrix transformation fromX into Y

and by (X,Y ) we denote the class of such matrices, that is, B ∈ (X,Y ) if and
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only if Bn ∈ Xβ for all n and Bx ∈ Y for all x ∈ X.
Let Bx be defined. Then, for all r, n, we write

tnr(Bx) =

∞∑
k=1

t(n, k, r)xk ,

where

t(n, k, r) =
1

hr

∑
i∈Ir

b(σi(n), k),

and b(n, k) denotes the element bnk of the matrix B.

Let X(p) denote the set of all sequences x = (xk) such that the following

norms are finite:

‖x‖X(p) =

{ ∞∑
s=0

∣∣∣x′s∣∣∣p
}1/p

, for 1 ≤ p <∞

and

‖x‖X(∞) = sup
{∣∣∣x′s∣∣∣ ; s ≥ 0

}
,

where

x
′
s = 2−s sup

{∣∣∣∣∣
k∑

i=2s

xi

∣∣∣∣∣ ; 2s ≤ k < 2s+1

}
.

To simplify our presentation we shall confine ourselves to 1 < p <∞.

Next let Y (q) denote the set of all sequences y = (yk) such that the following

norms are finite;

‖x‖Y (q) = {
∞∑
s=0

|y′s|q}1/q, for 1 < q <∞

where

y
′
s = 2s{

∑
2s=k<2s+1−1

|yk − yk+1|+ |y2s+1−1|}



66 Rabia Savaş

The cases where q = 1 and q = ∞ are similar. In what follows we shall

always assume 1
p + 1

q = 1

We now obtain the following theorem

Theorem 2.1. A ∈ (X(p), Vσ(θ)) if and only if

(i) M = sup{‖b(n, k, r)k≥1‖Y (q);m ≥ 1} <∞, and

(ii) limrb(n, k, r) = αk uniformly in n , ( k fixed)

Proof. The necessity is open. To prove the sufficiency given x ∈ X(p) we want

to show that Ax belongs to Vσ(θ). First we observe that α = (αk) ∈ Y (q) and

‖α‖Y (q) ≤ M where M is the constant. Since x ∈ X(p) for any given ε > 0,

we can choose r0 such that

{
∞∑

s=s0+1

|x′s|p}1/p <
ε

4M
.

Then we can find that for sufficiently large n∣∣∣ ∞∑
k=1

(b(n, k, r)− αk)xk
∣∣∣
≤

∣∣∣ ∞∑
s=0

∣∣∣∑
s

(b(n, k, r)− αk)xk
∣∣∣

≤
s0∑
s=0

∣∣∣∑
s

(b(n, k, r)− αk)xk
∣∣∣+

∞∑
s=s0+1

∣∣∣∑
s

(b(n, k, r)− αk)xk
∣∣∣

≤ ε

2
+ 2M.

ε

4M

= ε

�

Hence the proof is completed.

Let us denote v the space of sequences of bounded variation, that is
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v = {x :
∑
k

| xk − xk−1 | <∞, x0 = 0}

v is a Banach space normed by ‖x‖ =
∑
k

| xk − xk−1 |.

We have

Theorem 2.2. A ∈ (v, Vσ(θ) if and only if

(i)

M = supr|
∞∑
k=t

b(n, k, r)| <∞, t, n = 1, 2, ....

(ii) there exists an α ∈ C such that

limn

∑
k

b(n, k, r) = α,

uniformly in n ,

and

(iii) there exists an αk ∈ C(k = 0, 1, 2, ...) such that

limrb(n, k, r) = αk,

uniformly in n.

Proof. Suppose that B ∈ (v, Vσ(θ)). This implies that Bx ∈ Vσ(θ) for x ∈ v.

Since Vσ(θ) ⊂ `∞,

Bx ∈ `∞ and hence (i) holds. Define ek = (0, 0, ..., 0, 1(kth place), 0, ...)and e =

(1, 1, ...). Since ek and e are in v , (ii) and (iii) must hold.
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Conversely, suppose that the conditions (i) - (iii) hold and x ∈ v. Since v ⊂
c, therefore xk → `. Now∑

k

∣∣∣b(n, k, r)xk∣∣∣ ≤ ∑
k

|xk − xk−1|
∣∣∣ t∑
k=1

b(n, k, r)
∣∣∣+ `

∣∣∣∑
k

b(n, k, r)
∣∣∣.

By (i) and (iii) we get for each r,

supt

∣∣∣ t∑
k=1

b(n, k, r)
∣∣∣ <∞.

Therefore tnr(Bx) exists for each n and x ∈ v. Also
∑
αkxk exists for each

x ∈ v. For given ε > 0, choose and fix k0 ∈ Z+ such that

∑
k=k0+1

|xk − xk−1| < ε/4M.

We have

|tnr(Bx)−
∑
k

αkxk − `
∑
k

(b(n, k, r)− αk)| ≤ I1 + I2

where

I1 =

k0∑
k=1

∣∣∣ t∑
k=1

(b(n, k, r)− αk)
∣∣∣∣∣∣xk − xk−1∣∣∣,

and

I2 ≤ supt
∣∣∣ t∑
k=1

(b(n, k, r)− αk)
∣∣∣ ∑
k=k0+1

|xk − xk−1
∣∣∣.

By virtue of condition (iii) there exists an integer no > 0 such that I1 ≤
ε/2 for n ≥ no . Clearly I2 ≤ ε/2. Further by virtue of condition (ii) we

have for n ≥ no,
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∣∣∣tnr(Bx)−
∑
k

αkxk − `(α−
∑
k

αk)
∣∣∣ ≤ ε,

therefore we have uniformly in n,

limrtnr(Bx) = `α+
∑
k

αk(xk − `),

so that Bx ∈ Vσ(θ) and this completes proof. �

We write (v, Vσ(θ), P ) to denote the subset of (v, Vσ(θ)) such that A is

almost lacunary convergent to the limit of x in v.

We know consider the class (v, Vσ(θ), P ).

Theorem 2.3. A ∈ (v, Vσ(θ), P ) if and only if

(iv) the condition (i) of Theorem 2.2 holds

(v) limr
∑

k b(n, k, r) = 1, uniformly in n ,

and

(vi) limrb(n, k, r) = 0, for each k uniformly in n.

Proof. Let B ∈ (v, Vσ(θ), P ). Then conditions hold by theorem 2.2. Let the

conditions (i)-(iii) hold. Then by Theorem 2.2., B ∈ (v, Vσ(θ)) and

limr

∑
k

b(n, k, r)xk = `,

uniformly in n.

This completes the proof. �

The following sequence space has been defined in [15].

Let Xp(1 ≤ p <∞) be the space of all x ∈ X with

‖x‖p =
( ∞∑
n=1

∣∣∣∣∣ 1n
n∑
k=1

xk

∣∣∣∣∣
p )1/p

for 1 ≤ p <∞.
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It is easy to see that Xp(1 ≤ p <∞) is a Banach space of nonabsolute type

and the above norm is saturated except for p = 1,( see, [15]).

Let Yq be the space of all y ∈Y such that

(a) |kyk| ≤M for all k = 1, 2, . . .

(b) αq(y) =
(∑∞

k=1 |k(yk − yk+1)|q
)1/q

<∞ for 1 ≤ q <∞
and α∞(y) = sup {|k(yk − yk+1)| ; k = 1, 2, . . .} <∞.

The following theorem is due to Ng [14].

Theorem 2.4. The associate space Xp′ of Xp is the space Yq with the norm

αq, where 1
p + 1

q = 1.

We need the following lemma is due to [15] for the proof of the next theorem.

Lemma 2.1. A matrix A transforms a BK- space E into a BK- space F

then the transformation is linear and continuous.

We now have

Theorem 2.5. An infinite matrix B ∈ (Xp, Vσ(θ)) if and only if B satisfies

the following conditions :

(i) supnr ‖{k(b(n, k, r)− b(n, k + 1, r))}k≥1‖q <∞ ,

(ii) supk |kb(n, k, r)| <∞ for every fixed n, r,

(iii) limrk(b(n, k, r)−b(n, k+1, r)) = δk,uniformly in n, for every fixed k,

where 1
p + 1

q = 1.

Proof. First we prove that the conditions are necessary . Suppose B = (bnk)

maps Xp into Vσ(θ), then the series
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tnr(Bx) =

∞∑
k=1

b(n, k, r)xk

is convergent for every n, r and for every x ∈ Xp. Then Theorem 2.4 the

sequence (b(n, k, r))kis an element in Yq for every n, r. It follows that the

condition (ii) holds and

‖{k(b(n, k, r)− b(n, k + 1, r))}k≥1‖ <∞.

Since Xp and Vσ(θ) are BK-spaces therefore by Lemma 2.1, we have

‖tnr(Bx)‖ ≤ K ‖x‖p
for some real constant K, and all x ∈ Xp or

supnr |tn,r(Bx)| ≤ K ‖s‖

for all x ∈ Xp with s = (sk) where

sk =
1

k

k∑
i=1

xi.

It follows that

sup
nr

∣∣∣∣∑∞k=1 k(b(n, k, r)− b(n, k + 1, r))sk
‖s‖

∣∣∣∣ ≤ K.
Hence we have

supn,r ‖{k(b(n, k, r)− b(n, k + 1, r))}k≥1‖ ≤ K.

Therefore the condition (i) holds. To prove the condition (iii) is necessary

. We take for each fixed k, a sequence x(k) in Xp with x
(k)
j = k, if j = k, −k

if j = k + 1, =0, if j 6= k, k + 1. Then we see that

sk =
1

k

k∑
k=1

x
(k)
j = 1

and sj = 0 if j 6= k. For this x(k) we have,
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trn(Bx(k)) =
∞∑
j=1

b(n, j, r)x
(k)
j =

∞∑
j=1

j(b(n, j, r)− b(n, j + 1, r))sj

= k(b(n, k, r)− (b(n, k + 1, r)→ δk

as r →∞, uniformly in r. This shows that condition (ii) is necessary.

Conversely, suppose the conditions (i), (ii) and (iii) hold. Then by condi-

tions (i) and (ii) the series

trn(Bx) =

∞∑
k=1

b(n, k, r)xk

is convergent for every n, r and x ∈ Xp. By the condition (iii) we have

|k(b(n, k, r)− b(n, k + 1, r))|q → ‖δk|q

as r →∞ uniformly in n and since for every positive integer p{
p∑

k=1

|k(b(n, k, r)− b(n, k + 1, r))|q
}1/q

≤ supnr

{ ∞∑
k=1

|k(b(n, k, r)− b(n, k + 1, r))|q
}1/q

= β

by letting r →∞ we get{
p∑

k=1

|δk|q
}1/q

≤ supr,n

{
p∑

k=1

|k(b(n, k, r)− b(n, k + 1, r))|q
}1/q

.

Since this true for every positive integer p , it follows that

{
p∑

k=1

|δk|q
}1/q

<∞.

Now for every sequence x ∈ Xp, we have

sn =
1

n

n∑
k=1

xk

as n→∞. Given any ε > 0, there exists N > 0 such that
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{ ∞∑
k=N

|sk|p
}1/p

<
ε

4β
.

And by condition (iii) there exists integer N1 such that∣∣∣∣∣
N∑
k=1

{k(b(n, k, r)− b(n, k + 1, r)− δk)} sk

∣∣∣∣∣ < ε

2
,

for all r > N1. Now for all r > N1,∣∣∣∣∣
∞∑
k=1

{k(b(n, k, r)− b(n, k + 1, r)− δk)} sk

∣∣∣∣∣ ≤
∣∣∣∣∣
N∑
k=1

{k(b(n, k, r)− b(n, k + 1, r)− δk)} sk

∣∣∣∣∣
+

∣∣∣∣∣
∞∑

k=N+1

{k((b(n, k, r)− b(n, k + 1, r)− δk)} sk

∣∣∣∣∣
<
ε

2
+
( ∞∑
k=N+1

{|k(b(n, k, r)− b(n, k + 1, r)|+ |δk)|}q
)1/q

×
( ∞∑
k=N+1

|sk|p
)1/p

<
ε

2
+ 2β

ε

4β
= ε.

So we have

limr

∞∑
k=1

k(b(n, k, r)− b(n, k + 1, r)− δk)sk =

∞∑
k=1

δksk

uniformly in n. It follows that

limrtnr(Bx) = limr

∞∑
k=1

b(n, k, r)xk

= limr

∞∑
k=1

k(b(n, k, r)− b(n, k + 1, r))sk

=

∞∑
k=1

δksk

uniformly in n. This show that Bx ∈ Vσ(θ) and B = (bnk) maps Xp, (1 ≤ p <
∞) into Vσ(θ) . This completes the proof. �



74 Rabia Savaş

Corollary 2.1. A matrix transformation B = (bnk) maps the space Xp into

the space Vσ(θ)0 if and only if

(i) the conditions ( i ) and ( ii ) of Theorem 2.5 hold, b (ii) limrk(b(n, k, r)−
b(n, k + 1, r)) = 0, uniformly in n, for every fixed k, where 1

p + 1
q = 1.
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[20] E. Savaş, Matrix transformations and almost convergence. Math. Student 59( 1-4),
(1991) , 170-176.
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