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Abstract

Understanding how fluid flow in human bodies is crucial in Biomedical En-

gineering. Studying blood rheology is crucial as it may help in detecting , if

not designing a treatment for some blood related diseaseses or understanding

them better . The aim of this paper is to study the heterogeneous reaction of

blood flow velocity, temperature and diffusion through microvessel with the

stress-jump condition at the interface of the clear and peripheral region and

velocity slip condition at the wall of microvessel .We have considered a two

phase model where the radius of the microvessel is divided into two parts. The

flow nature at the clear region is defined by non-Newtonian Casson fluid and

the flow at peripheral region is defined by Newtonian fluid. The wall of the

microvessel is considered as permeable and the nature defined by Brinkman
39
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model. The governing equations are solve numerically and written in the form

of Bessel function. Impact of the velocity, temperature and concentration

profile with respect to the different parameters such as stress-jump condition,

permeability parameter, yield stress, velocity and concentration slip condition

are displayed graphically.

Key words: Blood Flow, Two phase model, non-Newtonian fluid, stress-

jump condition, heterogeneous reaction.
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1. Introduction

The study of fluid dynamics of basic biological fluids such as blood has con-

sidered as a great tool of biomedical engineering in recognizing the cause of

certain diseases and making easy to come up with ways to cure the diseases

(Mazumdar [1]). Blood is a complex body fluid is a liquid tissue consisting

of several types of formed elements (cells) suspended in an aqueous fluid ma-

trix (plasma). Blood flows in different ways depending on the channel it is

flowing in e.g closed circulating system (veins, arteries and capillaries) and

open circulatory system (heart etc). Nanda and Basu Mallik [2] pointed out

that blood behaves like a homogeneous Newtonian fluid in large blood vessels

while in narrow blood vessels behaves as a non-Newtonian fluid. Study of

heat transfer in a living tissue is always interesting and development math-

ematical models in purpose to focusing thermal regulation, comfort or other

phenomena where significant heat exchanges taken place (Chen and Holmes

[3]. The bio-heat equation during blood flow through vessel has been expressed

by Pennes [4] based on his experimental outcomes. An analytical solution of

the Pennes equation on bioheat has been studied by Huang et al. [5] and Yue

et al. . Porous medium (peripheral layer for the micovessel) plays a vital

role in heat transfer in blood vessel (Khaled and Vafai [7]). Sinha et al. [8]
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highlighted the heat transfer for a unsteady blood flow in a permeable ves-

sel. They have introduced non-uniform heat source. The effect of magnetic

field on the heat transfer of two-phase blood flow through a stenosed artery

has been discussed by Ponalagusamy and Selvi [9]. The governing parame-

ters those influence the heat transfer and corresponding mathematical models

are discussed by Fasano and Sequeira [10] in details. Solutal transport along

with the heat transfer are responsible for different activities such as secretion

of insulin, gastric acid etc. and it is more prompted during drug delivery

(Sushma et al. [11]. Impact of both thermal diffusion and solutal reaction on

blood flow plays a vital role in the concentration difference and rate of change

in heat transfer (Xu et al. [12]). Heat and mass transfer for a physiological

fluid has been studied by Misra and Adhikary [13]. Das and Chakraborty [14]

studied the electoviscous effect on the velocity, temperature and concentration

distribution of non-Newtonian biofluid. The purpose of the present paper is to

study blood flow velocity , temperature and diffusion through a permeable mi-

crovessel with stress jump condition and velocity slip condition. Considering

a two phase non-Newtonian fluid model where the radius of the microvessel is

divided into two parts clear region and pheriheral layer of plasma. clear re-

gion defined to be non-Newtonian Casson fluid mostly containing cells such as

Red blood cells, white blood cells and platelets (plug region) and cell-depleted

region, while peripheral layer of plasma defined to be Newtonian fluid. The

concentration profile is divided into two-phase as same as the velocity profile.

However the temperature profile is considered as a single phase. The governing

equations for velocity, temperature and concentration are solved analytically

and established results through graphs.

2. Mathematical formulation

Since blood vessels are kind of circular, we consider a cylindrical polar

coordinate system (r, θ, z) where the z-axis is along the axis of the microvessel,
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where r and θ are coordinates along the radial and circumferential directions

respectively. The flow along the microvessel is described by a two phase non-

Newtonian Casson model and the wall of the microvessel is assumed to be

permeable following Brinkman Model nature, with slip condition at the wall.

Clear region is taken to be non-Newtonian Casson fluid which is of radius h2.

The radius of the plug region is h1, h−h2 being the thickness of the peripheral

region taken to be Newtonian fluid as shown in Fig. 2.1. It is assumed that

the flow is fully developed and axi-symetric.

Figure 1. schematic diagram of the two-phase non-Newtonian
Casoon model of two-phase blood flow in a permeable microves-
sel

2.1. Velocity Profile. Due to small radius, the flow in the microvessel is

steady, incompressible and uni-directional. The axial velocity u is a function

of r only. We have considered the length of the microvessel is larger that the

radius of the microvessel and hence the pressure gradient is constant [9]. The

governing equations for the two phase Casson fluid with Brinkman model at

the peripheral region may be written as

∂Up
∂r

= 0, 0 ≤ r ≤ h1, (1)

∂p

∂z
=
−1

r

∂

∂r

[
r

(
τ1/2y +

(
− µ1

∂U1

∂r

)1/2)2
]
, h1 ≤ r ≤ h2, (2)

∂p

∂z
=
µ2
r

∂

∂r

(
r
∂U2

∂r

)
− kU2, h2 ≤ r ≤ h, (3)

where p is the pressure, Up, U1 and U2 are axial velocities in the plug region,

core region and peripheral region respectively. τy is the yield stress, µ1 and µ2

are viscosities of the fluid in the core region and peripheral region, respectively.
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Associated boundary conditions are

∂Up
∂r

= 0, at r = 0, (4)

Up = U1, at r = h1, (5)

U1 = U2 and µ1
∂U1

dr
= µ2

(
∂U2

∂r
− βU2

)
at r = h2, (6)

∂U2

∂r
+ γU2 = 0, at r = h. (7)

Equation (2.4) represents the velocity profile constant at the plug region.

Equation (2.5) is the continuity of the velocity at the plug and core region.

Stress jump condition at the interface of the clear and peripheral region is

define in equation (2.6) with the continuity of the velocity. Velocity slip con-

dition (equation 2.7) is considered at the inner wall of the microvessel as the

microvessel wall is porous in nature. Solving the above governing equation

analytically and using the associated boundary condition we get our velocities

as follows

Up =
h21
4µ1

∂p

∂z
− h1τy

µ1
+

4h
3/2
1

3µ1

√
−τy

2

∂p

∂z
+B, (8)

U1 =
r2

4µ1

∂p

∂z
− rτy
µ1

+
4r3/2

3µ1

√
−τy

2

∂p

∂z
+B, (9)

U2 = m1J0(λr) +m2Y0(λr) +
κ

λ2
, (10)

where λ2 = −k
µ2

, κ = 1
µ2

dp
dz m1, m2 and B is found in the appendix.

Volumetric flow rate

Q = 2π

∫ h

0
rudr, (11)

expressed as

Q = 2π

[∫ h1

0
rUpdr +

∫ h2

h1

rU1dr +

∫ h

h2

U2dr

]
, (12)

Thus the average velocity of blood flow through the microvessel

∪ =
Q

πh2
. (13)
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2.2. Temperature. Using the concept of the Pennes’ equation (Pennes [4],

Yue et al. [6]), the one dimensional bioheat equation for the steady state and

absent of the external spatial heating can be written as

∂

∂r

(
r
∂T

∂r

)
+
qm
Kb

=
WbCb
Kb

(T − TA), (14)

where T is the temperature which is a function of r, qm is the metabolic heat

generation per unit volume, Wb is the perfusion rate of blood, Cb is the specific

heat of the blood, Kb is the thermal conductivity of the surrounding tissue

of the blood vessel and TA is the arterial temperature. Solving the governing

equation using the boundary conditions below

∂T

∂r
= 0 at r = 0, (15)

T = Tw at r = h, (16)

where Tw is the wall temperature due to the surrounding tissue of the blood

vessel. We get

T = L1J0(r
√
−G) + L2Y0(r

√
−G) + TA +

qm
wbCb

, (17)

with G = WbCb/Kb. Since Temperature is finite at r = 0 ,we have L2 is zero,

Hence

T = L1J0(r
√
−G) + TA +

qm
wbCb

, (18)

where L1 = Tw−TA
J0(h

√
−G)

.

2.3. Concentration Profile. Following the approach proposed by Taylor

[15], a cylindrical frame of reference (r,z) is considered as in fig. 2.1. The

governing advection-Diffusion equation is given by

U(r)

Dm

∂C

∂z
+

1

Dm

∂C

∂t
=

1

r

∂

∂r

(
r
∂C

∂r

)
+
∂2C

∂z2
, (19)

where u(r) is non-uniform axial velocity, C(r,z,t) is solute concetration and

Dm is the Diffussion coefficient. Moving on with Taylor’s approximation, the
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governing equation can be reduced (Taylor [15]), and the reduced equation

1

r

d

dr

(
r
dC

dr

)
=
Û(r)

Dm

dC

dz
, (20)

where Û(r) = U(r)− ∪ is the velocity deviation from the mean ∪ (Gentile et

al. [16]).

Solving the reduced equation (2.20) by using the plug, core and peripheral

region velocities together with the following boundary conditions

C =
∂C

∂r
= 0 at r = 0, (21)

C1 = Cp at r = h1, (22)

C1 = C2,
∂C1

∂r
=
∂C2

∂r
at r = h2, (23)

∂C2

∂r
+ γC2 = − 1

Dm

∂C

∂z
at r = h, (24)

we get

Cp =
Up
Dm

∂C

∂z

r2

4
, (25)

C1 =

(
r4

64µ1

∂p

∂z
− r3

9

τy
µ1

+
16

147

r
7
2

µ1

√
−τy

2

∂p

∂z
+
Br2

4

)
1

Dm

∂C

∂z
+B1lnr +B2,

(26)

C2 =

(
m1

λ2
J0(λr)−

m2

λ2
Y0(λr) +

r2

4

κ

λ2

)
1

Dm

∂C

∂z
+B3lnr +B4, (27)

where B1, B2, B3 and B4 are found in the appendix.

3. Results and Discussion

The governing equations for velocity, temperature and solute concentration

of blood flow in permeable microvessel are solved analytically with the help of

boundary conditions and written in the form of general and modified Bessel

functions. Then, these profiles where plotted against radius, for some fixed

parameters β = 0.1, γ = 0.02, τy = 0.15, dpdz = 10 and k = 1. The impact of
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different parameters such as stress jump constant, slip constant, yield stress,

pressure gradient and permeability constant are shown through Fig. 2.2 - 2.16.

The blood flow through a microvessel is very interesting and complicated in

the present of RBSc which creates an additional region near to the axis. Due

to rotation nature, RBCs are accumulated near to the axis of the microvessel

and behaves as a semisolid cylinder of radius hp, width of the plug region. The

velocity of this region is constant or other way can say that it followed with a

zero velocity gradient. From the governing equations (2.1) - (2.3), it is clear

that at the plug region the velocity of the fluid is constant which appeared

in all the graphs, and at the core region the fluid follow the Casson nature

which gives a parabolic shape and it continue at the peripheral region to follow

the boundary condition at the inner wall of the microvessel. In the present

problem, we have considered the width of the plug region is 0.3 and hence the

constant velocity profile will be continue till r = 0.3. However, a significant

changes has been noticeable at r = 0.9, which is the interface of the clear

region and peripheral region. A similar profile of the velocity is observed for

all cases. Stress jump condition is taken place at the interface of the fluid

Figure 2. Velocity radius graph with different stress jump
constant β

Figure 3. Velocity radius graph with different slip constant γ

region and peripheral region which is a porous medium. It represent a jump

of stress between two regions. It is evident that with increase in the stress

jump condition, the stress difference between two region is increasing and it

introduce an additional stress which may cause for the reduction in velocity

profile as shown in Fig. 2.2.
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The slip condition at the interface of the microvessel taken place due to

permeability nature of the ineer wall of the microvessel. It gives a non-zero

velocity at the inner surface. The nature of the velocity is more significant

near the wall, at the peripheral region. From Fig. 3, it is observed that for

higher value of slip constant (γ), the slope of the velocity is going upward

at the peripheral region and reduces the velocity difference. The stiffness is

more for higher slip constant (γ = 0.5) and almost slit for γ = 0.02. The

Figure 4. Velocity radius graph with different permeability
constant K

Figure 5. Velocity radius graph with different yield stress τy

permeability related with the porous medium which is containing the pores

and fluid is passing through those pores which gives a restriction on the flow.

Hence the flow is not that much faster than the clear region and as a result the

fluid velocity decreases with increase of the permeability parameter as shown

in Fig. 4.

Yield stress is another very important parameter which appears due to the

Casson fluid nature of the blood at the clear region. Yield stress is directly

proportional to the pressure gradient. With increase in yield stress, the veloc-

ity of the fluid increases but the slope is more stiffen for the higher value of

yield stress as clearly observed in Fig. 5.

Fig. 6 is displayed the influence of pressure gradient on the velocity profile.

It is evident that the velocity of the fluid is higher near to the axis as increase in

the pressure gradient. The velocities for different pressure gradient is coincide

at a point which is r = 0.65 in the present case. It is interesting to note that

the stiffness of the velocity is higher for higher value of the pressure gradient.
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Figure 6. Velocity radius graph with different pressure gra-
dient parameters

Concentration profile followed a zero concentration at the plug region. After

that there is an enhancement in the concentration with the radial direction.

This profile is followed in all the cases. The concentration of the solute is

decreasing with increase in the stress jump condition. It is because of the

decreasing in velocity which again retrained the solute concentration (see Fig.

7).

From Fig. 8, it is evident that the slip constant at the surface of the mi-

crovessel increases the concentration of the solute. The profile of the concen-

tration is the same as the previous. The value the slip constant is considered

0.02, 0.04, 0.06 and 0.08 and it is evident that the concentration difference is

higher between the lower values of slip constant i.e., between γ = 0.02 and

0.04.

The concentration of the solute is a decreasing function of the permeability

parameter as same as the velocity (see Fig. 9). May be this is the reason

of the reduction in concentration. Again the difference of the two consecu-

tive concentration is higher for the difference between two consecutive lower

permeability parameter.

Figure 7. Velocity radius graph with different stress jump
constant β

Figure 8. Concentration radius graph with different slip con-
stant γ

The yield stress, which is related with the nature of Casson fluid act mainly

at the clear region, is enhanced the concentration profile through the radius of
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the microvessel. However, an opposite phenomena is observed when compare

the difference of the two consecutive concentration, which is higher for this

case for the difference between two consecutive higher yield stress as visible

in Fig. 10. Initially, the pressure gradient enhanced the concentration of the

solute but for higher value it shows a stable concentration profile. From the

figure 11, it evident that the concentration profile not significantly change for

dp/dz = 30 and dp/dz = 40.

Figure 9. Concentration radius graph with different perme-
ability constant K

Figure 10. Concentration radius graph with different yield
stress τy

Figure 11. Concentration radius graph with different pres-
sure gradient

Temperature profile looks different and interesting. The temperature of

the blood (TA) and temperature at the inner surface of the microvessel which

is basically due to the temperature of the surrounding tissue, are considered

different in values. However, the temperature at the surface of the inner wall is

considered higher than the temperature of the blood. The motion of the RBCs

are constant near the axis and they are unable to distribute the temperature

through out. As a result, the temperature decreasing significantly at the plug

region and it continue at the outer region which is basically a cell depleted

region (absence of RBCs). Due to this cell depleted nature the temperature

reduction is continuing till r = 0.65. After that there is an increment in the

temperature profile which continue till the surface of the wall to follow the

boundary condition. This enhancement is related with the temperature of the
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inner surface which is higher than the temperature of the blood and hence

it influence the heat transfer towards the axis and increase the temperature

near to the surface. This general phenomena is observed for all the cases. The

nature of the temperature profile for different value of stress jump constant

is same as velocity and concentration profile i.e., the temperature profile is

increasing by enhancement in the stress jump constant (see Fig. 12). It is

noted that the temperature at near the axis is higher than the temperature at

the surface except for β = 0.1.

Figure 12. Temperature radius graph with different stress
jump constant β

Figure 13. Temperature radius graph with different slip con-
stant γ

Temperature profile curve is more interesting and significant with respect

to the slip velocity condition at the inner surface of the wall. Initially the

temperature gradient is negative, while after r = 0.65, the gradient becomes

positive. It observed that the stiffness of the positive gradient is higher that

the stiffness of the negative gradient (see Fig. 13). The temperature profile

is increasing with increase in the slip constant, however the difference is not

much significant.

The permeability of the microvessel and peripheral region reduced the tem-

perature at the axis of the vessel. This permeability parameter gives a signifi-

cant increment through out the region and it decreasing the temperature with

increase of the permeability. It is very clear that the temperature distribution

is much faster at the clear region than the peripheral region as reflected in Fig.

14. In all the cases, the temperature at the axis is higher than the temperature

at the surface of the microvessel. It is interesting to note that the temperature
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profile is constant with respect to radial direction for K = 1 and it carried a

constant value 0.5, the surface temperature.

Figure 14. Temperature radius graph with different perme-
ability constant K

Figure 15. Temperature radius graph with different yield
stress τy

Figure 16. Temperature radius graph with different pressure gradient

It is very interesting to see that the temperature at the axis is always lower

that the temperature at the surface of the microvessel under consideration of

the yield stress values as 0.15, 0.30, 0.45 and 0.60 (see Fig. 15). The tem-

perature at the axis is decreasing with increase in the yield stress. Initially

r = 0.5, the temperature profile not significantly behaves with respect to the

radial direction but after a critical point there is a sharp peak in the tempera-

ture profile. This peak is more sharper for higher yield stress and the critical

point moves away from the surface with increase on the yield stress. With

increase in pressure gradient, it enhances the velocity of the solute which

equally responsible to distribute the temperature through out. Hence, it is

very natural that the pressure gradient enhanced the temperature at the axis

and through out the radial direction. The temperature at the axis is higher

than the temperature at the surface for most of the cases (dp/dz = 20, 30,

40) while it is lower for the lower pressure gradient. Hence we have observed

two different pattern of temperature profile for larger and smaller value of the

pressure gradient as displayed in Fig. 16. For lower pressure gradient (here

dp/dz = 10), the temperature profile not significant but slightly increases with

radial direction.
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Conclusion

The present problem represent the velocity, temperature and concentration

of blood flow through a microvessel contain peripheral layer. The velocity

and concentration profile are divided into three region e.g., plug region, outer

region and peripheral region. The influence of the stress jump condition, slip

condition of velocity and concentration , yield stress, pressure gradient and

permeability of the peripheral region plays important roles which reflected

through graphs. In general it observed that the velocity and concentration

at the plug region is constant while after that velocity decreases through out

the radius but concentration increases continuously in radial direction. Ve-

locity is non-zero at the walls of the microvessel because of the slip constant

γ and stress jump constant cause rapid decrease in velocity between the core

region and the peripheral region. Temperature profile is challenging for all

the parameters. This works may give an overall idea of blood flow in sense of

velocity, temperature and concentration under certain condition.
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4. Appendix

λ2 = −k
µ2

κ = 1
µ2

dp
dz

T1 =
h22
4µ1

dp
dz −

h2τy
µ1

+
4h

3/2
2

3µ1

√
−τy
2

dp
dz −

κ
λ2

T2 =
h22
2µ1

dp
dz −

τy
µ1

+
2h

1/2
2
µ1

√
−τy
2

dp
dz

T3 =
h21
4µ1

dp
dz −

h1τy
µ1

+
4h

3/2
1

3µ1

√
−τy
2

dp
dz

S1 = −µ2λJ0(λh2)− µ2βJ0(λh2)
S2 = −µ2λY1(λh2)− µ2βY0(λh2)
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S3 = λJ1(λh)− γJ0(λh)

S4 = λY1(λh)− γY0(λh)

m1 = (T2 + µ2β
κ
λ2
− γ κ

λ2
§1
§3 )( S3

S1§4+S2§3 )

m2 = γκ( S3

S2
3λ

2−m2§4
)

B = m1J0(λh2) +m2Y0(λh2)− T1

G1 =
Up

Dm

dC
dz

h21
4 − (

h41
64µ1

dp
dz −

h31
9
τy
µ1

+ 16
147

h
7
2
1
µ1

√
−τy
2

dp
dz +

Bh21
4 ) 1

Dm

dC
dz

G2 = (m1
λ2
J0(λh2)−m2

λ2
Y0(λh2)+

h22
4

κ
λ2

) 1
Dm

dC
dz −(

h42
64µ1

dp
dz−

h32
9
τy
µ1

+ 16
147

h
7
2
2
µ1

√
−τy
2

dp
dz+

Bh22
4 ) 1

Dm

dC
dz

G3 = (
h32

16µ1
dp
dz−

h22
3
τy
µ1

+ 8
21
h

5
2
2
µ1

√
−τy
2

dp
dz + Bh2

2 ) 1
Dm

dC
dz +(m1

λ J1(λh2)+m2
λ Y1(λh2)+

h2
2

κ
λ2

) 1
Dm

dC
dz

G4 = (m1
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