Volume 39, No.01-02, 2020, 1-15

On the Absolute Hausdorff Summability of Fourier Series and Series Conjugate to Fourier Series

by
Sangram Kesari Ray, ${ }^{ *}$ G. Das and ${ }^{* * * B . K . R a y ~}$
*Plot-3, Madhusudan Vihar, Nayagarh-752069,Odisha,India
**177, Dharma Vihar,khandagiri,Bhubaneswar-751030,Odisha,India e-mail : gdas100@yahoo.com
*** Plot.No-102, Saheed Nagar, Bhubaneswar-751007, Odisha,India
e-mail:raykbraja@yahoo.co.in

Abstract

We study the absolute Hausdorff summability problem of Fourier's series and its conjugate series generalizing some known results in the literature.

Key words: Hausdorff means, Fourier series, conjugate series, mass function

AMS Classification: 40,41

1. Definition and Notations

Let $\sum_{n=0}^{\infty} a_{n}$ be an infinite series and let $\left\{S_{n}\right\}$ be the sequence of its partial sums. Corresponding to a given sequence $\left\{\mu_{n}\right\}$ of real or complex numbers, the sequence to sequence Hausdorff transformation is defined by [4]

$$
t_{n}=\sum_{k=0}^{n}\binom{n}{k}\left(\Delta^{n-k} \mu_{k}\right) S_{k}
$$

and the series to series Hausdorff Transformation is defined by [8]

$$
\begin{aligned}
& C_{n}=\frac{1}{n} \sum_{k=1}^{n}\binom{n}{k}\left(\Delta^{n-k} \mu_{k}\right) k a_{k},(n \geq 1) \\
& C_{0}=a_{0}, \text { where for } n \geq 0 \\
& \Delta^{m} \mu_{n}=\sum_{k=0}^{m}\binom{m}{k}(-1)^{k} \mu_{n+k}
\end{aligned}
$$

The sequence $\left\{S_{n}\right\}$ (or the series $\sum_{n=0}^{\infty} a_{n}$) is said to be summable $\left(H, \mu_{n}\right)$ to s if

$$
\lim _{n \rightarrow \infty} t_{n}=s
$$

Further if $\sum_{n=1}^{\infty}\left|C_{n}\right|<\infty\left(\right.$ or if $\left.\sum_{n=1}^{\infty}\left|t_{n}-t_{n-1}\right|<\infty\right)$
We say the series $\sum_{n=0}^{\infty} a_{n}$ (or the sequence $\left\{s_{n}\right\}$) is absolutely summable $\left|H, \mu_{n}\right|$ or summable $\left|H, \mu_{n}\right|$.
It is well known [4] that the necessary and sufficient condition for the method $\left(H, \mu_{n}\right)$ to be conservative is the existence of a mass function $\chi(x)$ defined over closed interval $[0,1]$ such that
(i) $\chi(x) \in B V(0,1)$
(ii) $\mu_{n}=\int_{0}^{1} x^{n} d \chi(x) \quad(n=0,1,2 \ldots)$

If further $\chi(x)$ satisfies the conditions

$$
\begin{aligned}
& \text { (iii) } \chi\left(0^{+}\right)=\chi(o)=o \\
& \text { (iv) } \chi(1)=1
\end{aligned}
$$

then $\mu(u)$ is called a regular moment constant, $\left(H, \mu_{n}\right)$ is called a regular Hausdorff Transformation and $\chi(x)$ is called a regular mass function.
If the mass function $\chi(x)=1-(1-x)^{\alpha}, \alpha>0,0 \leq x \leq 1$ then $\mu_{n}=\binom{n+\alpha}{n}^{-1}$
and $\left(H, \mu_{n}\right)$ method reduces to familiar (C, α) method [4]. On the other hand if

$$
\chi(x)=\left\{\begin{array}{cc}
0, & 0 \leq x<\frac{1}{1+q} \\
1, & \frac{1}{1+q} \leq x \leq 1
\end{array}\right.
$$

where $q>0$, then $\left(H, \mu_{n}\right)$ method reduces to familiar Euler or (E, q) method. Let $f(t)$ be a periodic function with period 2π and integrable in the sense of Lebesgue over $(-\pi, \pi)$. We assume without loss of generality that the constant term in the Fourier series of $f(t)$ is zero.
We write

$$
\begin{aligned}
\varphi(t) & =\frac{1}{2}\{f(u+t)+f(u-t)\} \\
\psi(t) & =\frac{1}{2}\{f(u+t)-f(u-t)\}
\end{aligned}
$$

Let the Fourier series of $f(t)$ at $t=u$ be given by

$$
\sum_{n=1}^{\infty} A_{n}(u)
$$

Where $A_{n}(u)=\frac{2}{\pi} \int_{0}^{\pi} \varphi(t) \cos n t d t,(n \geq 1)$ and the series conjugate to the Fourier series of $f(t)$ at $t=u$ be given by

$$
\sum_{n=1}^{\infty} B_{n}(u)
$$

Where $B_{n}(u)=\frac{2}{\pi} \int_{0}^{\pi} \psi(t) \sin n t d t,(n \geq 1)$

2. Introduction

Hille and Tamarkin[7] have studied the $\left(H, \mu_{n}\right)$ summability of Fourier series and associated series by imposing direct or indirect conditions on the mass function $\chi(x)$. Concerning the absolute Hausdorff summability of Fourier series Tripathy [12] obtained a result which turned out to be equivalent to Cesaro case. [see 10].

Bosanquet proved the following Theorem regarding the absolute Cesaro summability of Fourier series.
Theorem $\mathbf{A}[\mathbf{1}] \varphi(t) \in B V(0, \pi) \Rightarrow \sum_{n=1}^{\infty} A_{n}(u) \in|C, \alpha|, \alpha>0$. Further, Bosanquet and Hyslop proved the following Theorem regrading the absolute Cesaro summability of Conjugate Fourier series.
Theorem B[2] $\psi(t) \in B V(0, \pi)$ and $\frac{\psi(t)}{t} \in L(0, \pi) \Rightarrow \sum_{n=1}^{\infty} B_{n}(u) \in|C, \alpha|, \alpha>$ 0 .

3. Main Results

With a view to generalise Theorem A in Hausdorff summability set up, we prove the following

Theorem 1

Let
(i) $\left(H, \mu_{n}\right)$ is conservative
(ii) $\chi(x)$ is absolutely continuous over $(0,1)$
(iii) $\chi^{1}(x)$ is monotonic increasing in $(0,1)$
(iv) $\int_{0}^{1}\left|\chi^{1}(x)\right| \log \frac{1}{1-x} d x<\infty$

Then $\varphi(t) \in B V(0, \pi) \Rightarrow \sum_{n=1}^{\infty} A_{n}(u) \in\left|H, \mu_{n}\right|$.
Generalising result of Bosanquet and Hyslop (Theorem B) in Hausdorff summability set up we prove the following.
Theorem 2 Let
(i) $\left(H, \mu_{n}\right)$ is conservative
(ii) $\chi(x)$ is absolutely continuous over $(0,1)$
(iii) $\chi^{1}(x)$ is monotonic increasing in $(0,1)$
(iv) $\int_{0}^{1}\left|\chi^{1}(x)\right| \log \frac{1}{1-x} d x<\infty$

Then
(a) $\psi(t) \in B V(0, \pi)$
(b) $\frac{\psi(t)}{t} \in L(0, \pi)$
$\Rightarrow \sum_{n=1}^{\infty} B_{n}(u) \in\left|H, \mu_{n}\right|$
Remarks (i) The conditions imposed on the mass function $\chi(x)$ appears to be stringent but Theorem 1 fails to hold if we merely assume the absolute continuity of $\chi(x)$. We prove
Theorem 3 There exists Conservative matrix (H, μ_{n}) with absolutely continuous mass function $\chi(x)$ and a function $f(t)$ of the class L such that

$$
\varphi(t) \in A C(0, \pi)
$$

but the Fourier series of $f(t)$ at $t=u$ is not summable $\left|H, \mu_{n}\right|$.
Remarks (ii) By taking $\chi(x)=1-(1-x)^{\alpha}, 0<\alpha<1$ in Theorem 1 and Theorem 2 we obtain respectively Theorem A and Theorem B.

We need the following additional notations.

$$
\begin{aligned}
& \rho^{2}=1-4 x(1-x) \sin ^{2} t / 2 \\
& \Theta=\tan ^{-1} \frac{x \sin t}{1-x+x \cos t} \\
& P_{n}(x, t)=\sum_{\nu=0}^{n}\binom{n}{\nu} x^{\nu}(1-x)^{n-\nu} \cos \nu t \\
& Q_{n}(x, t)=\sum_{\nu=0}^{n}\binom{n}{\nu} x^{\nu}(1-x)^{n-\nu} \sin \nu t \\
& R_{n}(x, t)=\sum_{\nu=0}^{n}\binom{n}{\nu} x^{\nu}(1-x)^{n-\nu} \nu \cdot \sin \nu t \\
& S_{n}(x, t)=\int_{t}^{\pi} \frac{R_{n}(x, \nu)}{\nu} d \nu \\
& L_{n}(x, t)=\int P_{n}(x, t) d x \\
& M_{n}(x, t)=\int Q_{n}(x, t) d x
\end{aligned}
$$

Lemma 1

$$
\begin{aligned}
& P_{n}(x, t)=O(1) \\
& Q_{n}(x, t)=O(1) \\
& L_{n}(x, t)=O\left(\frac{1}{n t}\right) \\
& M_{n}(x, t)=O\left(\frac{1}{n t}\right)
\end{aligned}
$$

Proof By formal computation

$$
\begin{aligned}
& P_{n}(x, t)=\rho^{n} \cos n \Theta \\
& Q_{n}(x, t)=\rho^{n} \sin n \Theta \\
& L_{n}(x, t)=\frac{\rho^{n+1}}{n+1}\left[\frac{\sin (n+1) \Theta}{2 \tan t / 2}-\frac{\cos (n+1) \Theta}{2}\right] \\
& M_{n}(x, t)=-\frac{\rho^{n+1}}{n+1}\left[\frac{\cos (n+1) \Theta}{2 \tan t / 2}+\frac{\sin (n+1) \Theta}{2}\right]
\end{aligned}
$$

As $0<\rho^{n} \leq 1$, for $0 \leq x \leq 1$ and $0<t \leq \pi$, the proof of the lemma follows.
Lemma 2[3] Suppose that $f_{n}(x)$ is measurable in (a, b) where $b-a \leq \infty$ for $n=1,2,3 \ldots$. Then a necessary and sufficient condition that for every $\lambda(x)$ integrable (L) over (a, b) the functions $f_{n}(x) \lambda(x)$ should be integrable (L) over (a, b) and

$$
\sum_{n=1}^{\infty}\left|\int_{a}^{b} \lambda(x) \cdot f_{n}(x) d x\right|<\infty
$$

is that $\sum_{n=1}^{\infty}\left|f_{n}(x)\right|$ should be essentially bounded for x in (a, b).
Lemma 3 [14] $\sum_{\nu=1}^{n} \nu\binom{n}{\nu} x^{\nu}(1-x)^{n-\nu}=n x$.
Proof It is easy to verify.
Lemma 4[11] If $\eta>0$ and $\lambda>0, t^{\lambda} h(t)=H(t)$ then necessary and sufficient conditions that
(i) $h(t)$ should be of bounded variation in $(0, \eta)$
(ii) $\frac{|h(t)|}{t}$ should be integrable in $(0, \eta)$ are that

$$
\int_{0}^{\pi} t^{-\lambda}|d H(t)|<\infty \quad \text { and } \quad H(0+)=0
$$

Lemma 5[12] For $N=\left[\frac{1}{t}\right]+1$ and $M=\left[\frac{1}{t^{2}}\right]$

$$
\sum_{n=N}^{m} \frac{\left|Q_{n}(x, t)\right|}{n} \longrightarrow \infty \text { as } t \longrightarrow 0+
$$

Lemma 6 The Integral $\int_{0}^{1} \chi^{1}(x) \cdot \log \frac{1}{1-x} d x$ exists if and only if the integral

$$
\int_{0}^{1} \frac{\chi(1)-\chi(x)}{1-x} d x \text { exists. }
$$

Proof

$$
\begin{aligned}
& \int_{0}^{1} \frac{\chi(1)-\chi(x)}{1-x} d x \\
= & \int_{0}^{1} \frac{d}{d x}\left(\log \frac{1}{1-x}\right) \int_{x}^{1} \chi^{1}(u) d u \\
= & \int_{0}^{1} \chi^{1}(u)\left\{\int_{0}^{u} \frac{d}{d x}\left(\log \frac{1}{1-x}\right) d x\right\} d u \\
= & \int_{0}^{1} \chi^{1}(u) \log \frac{1}{1-u} d u
\end{aligned}
$$

and hence the lemma follows.
Lemma 7 For $n>\frac{\pi}{t}$ and $0<t<\pi$
(i) $\int_{0}^{1-\pi / n t} P_{n}(x, t) \chi^{1}(x) d x=O\left(\frac{\chi^{1}\left(1-\frac{\pi}{n t}\right)}{n t}\right)$
(ii) $\int_{1-\frac{\pi}{n t}}^{1} P_{n}(x, t) \chi^{1}(x) d x=O\{\chi(1)-\chi(1-\pi / n t)\}$
(iii) $\int_{0}^{1-\pi / n t} Q_{n}(x, t) \chi^{1}(x) d x=O\left\{\frac{\chi^{1}\left(1-\frac{\pi}{n t}\right)}{n t}\right\}$
(iv) $\int_{1-\pi / n t}^{1} Q_{n}(x, t) \cdot \chi^{1}(x) d x=O\{\chi(1)-\chi(1-\pi / n t)\}$

Proof of(i) We have by mean value theorem for some ζ with $0<\zeta<1-\frac{\pi}{n t}$

$$
\begin{aligned}
& \int_{0}^{1-\pi / n t} P_{n}(x, t) \chi^{1}(x) d x=\chi^{1}\left(1-\frac{\pi}{n t}\right) \int_{\xi}^{1-\frac{\pi}{n t}} P_{n}(x, t) d x \\
& =\chi^{1}\left(1-\frac{\pi}{n t}\right)\left[L_{n}\left(1-\frac{\pi}{n t}, t\right)-L_{n}(\zeta, t)\right] \\
& =O\left(\frac{\chi^{1}(1-\pi / n t)}{n t}\right), \text { using Lemma } 1 .
\end{aligned}
$$

Proof of (ii) Integrating by parts and then using mean value theorem we get

$$
\begin{aligned}
\int_{1-\pi / n t}^{1} P_{n}(x, t) \cdot \chi^{1}(x) d x & =\left[-(\chi(1)-\chi(x)) P_{n}(x, t)\right]_{x=1-\pi / n t}^{1} \\
& +\int_{1-\pi / n t}^{1}-(\chi(1)-\chi(x)) \frac{d}{d x} P_{n}(x, t) d x \\
& =\left[-(\chi(1)-\chi(x)) P_{n}(x, t)\right]_{x=1-\pi / n t}^{1}+(\chi(1)-\chi(1-\pi / n t)) \\
& \int_{1-\pi / n t}^{\xi} \frac{d}{d x} P_{n}(x, t) d x(1-\pi / n t<\xi<1) \\
& =O(\chi(1)-\chi(1-\pi / n t))+(\chi(1)-\chi(1-\pi / n t)) \\
& \left\{-P_{n}\left(1-\frac{\pi}{n t}, t\right)+P_{n}(\xi, t)\right\} \\
& =O\left(\chi(1)-\chi\left(1-\frac{\pi}{n t}\right)\right) \quad \text { using Lemma 1 }
\end{aligned}
$$

Proofs of (iii) and (iv) are respectively same as that of (i) and (ii).
Lemma 8 For $0<t<\pi$

$$
\int_{0}^{1} S_{n}(x, t) \cdot \chi^{1}(x) d x=O(n)
$$

Proof We have

$$
\begin{aligned}
& \int_{0}^{1} S_{n}(x, t) \chi^{1}(x) d x=\int_{0}^{1}\left(\int_{t}^{\pi} \frac{R_{n}(x, v)}{v} d v\right) \chi^{1}(x) d x \\
= & \int_{0}^{1}\left(\sum_{\nu=1}^{n}\binom{n}{\nu} x^{\nu}(1-x)^{n-\nu} . \nu . \int_{t}^{\pi} \frac{\sin \nu v}{v} d v\right) \chi^{1}(x) d x \\
= & O(1) \int_{0}^{1}\left(\sum_{\nu=1}^{n}\binom{n}{\nu} x^{\nu}(1-x)^{n-\nu} \cdot \nu \cdot \int_{t}^{\pi} \frac{\sin \nu v}{v} d v\right) \chi^{1}(x) d x \\
= & O(1) \int_{0}^{1}\left(\sum_{\nu=1}^{n}\binom{n}{\nu} x^{\nu}(1-x)^{n-\nu} . \nu\right) \chi^{1}(x) d x \\
= & O(\nu) \int_{0}^{1} x\left|\chi^{1}(x)\right| d x, \quad \text { using Lemma } 3 \\
= & O(n) .
\end{aligned}
$$

Lemma 9 If $\chi(x)$ satisfies the hypothesis of Theorem 1 (on Theorem 2) then
(i) $\sum_{n>\frac{\pi}{t}} \frac{\chi^{1}\left(1-\frac{\pi}{n t}\right)}{n^{2}}=O(t), 0<t<\pi$
(ii) $\sum_{n>\frac{\pi}{t}} \frac{1-\chi\left(1-\frac{\pi}{n t}\right)}{n}=O(1), 0<t<\pi$

Proof of (i) Since

$$
\sum_{n>\frac{\pi}{t}} \frac{\chi^{1}\left(1-\frac{\pi}{n t}\right)}{n^{2}}=\sum_{n>\pi / t} \frac{n+1}{n} \frac{\chi^{1}\left(1-\frac{\pi}{n t}\right)}{n(n+1)}
$$

and $\max \left(\frac{n+1}{n}\right)=2$ for $n \geq 1$, we have

$$
\begin{aligned}
& \sum_{n>\frac{\pi}{t}} \frac{\chi^{1}\left(1-\frac{\pi}{n t}\right)}{n^{2}} \leq 2 \sum_{n>\pi / t} \frac{\chi^{1}\left(1-\frac{\pi}{n t}\right)}{n(n+1)} \\
= & \frac{2 t}{\pi} \sum_{n=\left[\frac{\pi}{t}\right]+1}^{\infty}\left(1-\frac{\pi}{n t}\right)\left\{\left(1-\frac{\pi}{(n+1) t}\right)-\left(1-\frac{\pi}{n t}\right)\right\} \\
< & \frac{2 t}{\pi} \int_{\delta}^{1} \chi^{1}(t) d t, \text { where } \delta=\frac{\pi}{t\left(\left[\frac{\pi}{t}\right]+1\right)} \\
= & O(t)
\end{aligned}
$$

Proof of (ii) We have

$$
\begin{aligned}
\sum_{n>\frac{\pi}{t}} \frac{\chi(1)-\chi\left(1-\frac{\pi}{n t}\right)}{n} & \leq \int_{\frac{\pi}{t}}^{\infty} \frac{\chi(1)-\chi\left(1-\frac{\pi}{t x}\right)}{x} d x \\
& =\int_{0}^{1} \frac{\chi(1)-\chi(y)}{1-y} d y
\end{aligned}
$$

which exists by hypothesis and Lemma 6 .

5. Proof of Theorem 1

Integrating by parts we have

$$
A_{n}(u)=-\frac{2}{\pi} \int_{0}^{\pi} \frac{\sin n t}{n} d \varphi(t), n \geq 1
$$

and using it with the definition of Absolute Hausdorff summability of Fourier series, now we obtain , by simplification

$$
C_{n}=-\frac{2}{\pi} \int_{0}^{\pi} d \varphi(t) \int_{0}^{1} Q_{n}(x, t) \cdot \chi^{1}(x) d x
$$

and by Lemma 2 the series $\sum_{n=1}^{\infty}\left|C_{n}\right|<\infty$ if and only if

$$
\sum=\sum_{n=1}^{\infty} \frac{1}{n}\left|\int_{0}^{1} Q_{n}(x, t) \chi^{1}(x) d x\right|=O(1)
$$

uniformly for $0<t \leq \pi$.
Write

$$
\begin{aligned}
\sum & =\left(\sum_{n \leq \pi / t}+\sum_{n>\pi / t}\right) \frac{1}{n}\left|\int_{0}^{1} Q_{n}(x, t) \chi^{1}(x) d x\right| \\
& =\sum_{1}+\sum_{2} \text { (say) }
\end{aligned}
$$

Since $|\sin \nu t| \leq \nu t$ for all $\nu \geq 1$ and $0<t<\pi$,
We have

$$
\left|Q_{n}(x, t)\right| \leq n x t \quad(\text { by Lemma } 3)
$$

Now by Lemma 3 and hypothesis

$$
\begin{aligned}
\sum_{1}^{\prime} & \leq \sum_{n \leq \pi / t} \frac{1}{n} \int_{0}^{1} Q_{n}(x, t)\left|\chi^{1}(x)\right| d x \\
& \leq t \sum_{n \leq \pi / t} \int_{0}^{1} x\left|\chi^{1}(x)\right| d x \\
& =O(1)
\end{aligned}
$$

By Lemma 7 and Lemma 9

$$
\begin{aligned}
\sum_{2} & =O\left(t^{-1}\right) \sum_{n>\pi / t}^{1} \frac{\chi^{1}(1-\pi / n t)}{n^{2}}+O(1) \sum_{n>\pi / t} \frac{\chi(1)-\chi(1-\pi / n t)}{n} \\
& =O(1)
\end{aligned}
$$

Collecting the above results, we have for $0<t<\pi$

$$
\sum=\sum_{1}+\sum_{2}=O(1) .
$$

and this completes the proof of Theorem 1.

6. Proof of Theorem 2

By Lemma 4 (taking $\lambda=1$) Theorem 2 is equivalent to Theorem 2a. Let conditions (i), (ii), (iii) and (iv) of Theorem 2 hold. Then

$$
H(+0)=0, \int_{0}^{\pi} t^{-1}|d H(t)|<\infty \Rightarrow \sum_{n=1}^{\infty} B_{n}(x) \in\left|H, \mu_{n}\right|
$$

Proof of Theorem 2a Writing $H(t)=t \psi(t)$ and integrating by parts we get

$$
\begin{align*}
B_{n}(u) & =\frac{2}{\pi} \int_{0}^{\pi} H(t) \frac{\sin n t}{t} d t \\
& =\int_{0}^{\pi}\left(\int_{t}^{\pi} \frac{\sin n v}{v} d v\right) d H(t),(n \geq 1) \tag{6.1}
\end{align*}
$$

the integrated part vanishes as $H(+0)=0$. From the definition the series $\sum_{n=1}^{\infty} B_{n}(u)$ is summable $\left|H, \mu_{n}\right|$ if

$$
\sum\left|D_{n}\right|<\infty
$$

where

$$
\begin{equation*}
D_{n}=\frac{1}{n} \sum_{\nu=1}^{n}\binom{n}{\nu}\left(\Delta^{n-\nu} \mu_{\nu}\right)\left(\nu B_{\nu}(u)\right) \tag{6.2}
\end{equation*}
$$

using (6.1) and (6.2) we get

$$
\begin{aligned}
D_{n} & =\frac{2}{\pi n} \int_{0}^{\pi} d H(t) \int_{t}^{\pi} \frac{d v}{v}\left\{\sum_{\nu=1}^{n}\binom{n}{\nu} \nu \sin \nu v \int_{0}^{1} x^{\nu}(1-x)^{n-\nu} \chi^{1}(x) d x\right\} \\
& =\frac{2}{\pi n} \int_{0}^{\pi} d H(t) \int_{0}^{1} S_{n}(x, t) \cdot \chi^{1}(x) d x
\end{aligned}
$$

By Lemma 8 , the integral $\frac{1}{n} \int_{0}^{1} S_{n}(x, t) \cdot \chi^{1}(x) d x$ is finite for all $n \geq 1$ and hence by Lemma 2 for the convergence of the series $\sum_{n=1}^{\infty}\left|D_{n}\right|$, it is necessary and sufficient to show that

$$
\begin{equation*}
\sum^{*}=\sum_{n=1}^{\infty} \frac{1}{n}\left|\int_{0}^{1} S_{n}(x, t) \chi^{1}(x) d x\right|=O\left(t^{-1}\right) \tag{6.3}
\end{equation*}
$$

uniformly for $0<t \leq \pi$.
We write

$$
\sum^{*}=\left(\sum_{n<\frac{\pi}{t}}+\sum_{n>\pi / t}\right) \frac{1}{n}\left|\int_{0}^{1} S_{n}(x, t) \chi^{1}(x) d x\right|=\sum_{1}^{*}+\sum_{2}^{*} \quad \text { (say) }
$$

By Lemma $8 \sum_{1}^{*}=\sum_{n \leq \pi / t} \frac{1}{n}\left|\int_{0}^{1} S_{n}(x, t) \chi^{1}(x) d x\right|=O\left(t^{-1}\right)$.
By mean value theorem for some ξ with $t<\xi<\pi$

$$
\begin{align*}
& \int_{0}^{1} S_{n}(x, t) \chi^{1}(x) d x \\
= & \int_{0}^{1}\left(\sum_{\nu=1}^{n}\binom{n}{\nu} x^{\nu}(1-x)^{n-\nu} \int_{t}^{\pi} \frac{\sin \nu v}{v} d v\right) \chi^{1}(x) d x \\
= & t^{-1}\left\{\int_{0}^{1} P_{n}(x, \xi) \chi^{1}(x) d x-\int_{0}^{1} P_{n}(x, t) \chi^{1}(x) d x\right\} \\
= & t^{-1}\left\{I_{n}^{(1)}-I_{n}^{(2)}\right\} \text { say } \tag{6.4}
\end{align*}
$$

using (i) and (ii) of Lemma 7, we get

$$
\begin{equation*}
I_{n}^{(2)}=O\left(\frac{\chi^{1}(1-\pi / n t)}{n t}\right)+O(\chi(1)-\chi(1-\pi / n t)) \tag{6.5}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
I_{n}^{(1)}=O\left(\frac{\chi^{1}(1-\pi / n t)}{n \xi}\right)+O\left(\chi(1)-\chi\left(1-\frac{\pi}{n \xi}\right)\right) \tag{6.6}
\end{equation*}
$$

Now

$$
\begin{align*}
\sum_{2}^{*} & =\sum_{n>\pi / t} \frac{1}{n}\left|\int_{0}^{1} S_{n}(x, t) \chi^{1}(x) d x\right| \\
& =O\left(t^{-1}\right)\left\{\sum_{n>\pi / t} \frac{\left|I_{n}(1)\right|}{n}+\sum_{n>\pi / t} \frac{\left|I_{n}(2)\right|}{n}\right\} \tag{6.7}
\end{align*}
$$

From (6.5)

$$
\begin{aligned}
\sum_{n>\pi / t} \frac{\left|I_{n}^{(2)}\right|}{n} & =O\left(t^{-1}\right) \sum_{n>\pi / t} \frac{\chi^{1}\left(1-\frac{\pi}{n t}\right)}{n^{2}}+O(1) \sum_{n>\pi / t} \frac{\chi(1)-\chi(1-\pi / n t)}{n} \\
& =O(1)(\text { by Lemma } 9)
\end{aligned}
$$

Further

$$
\begin{align*}
\sum_{n>\pi / t} \frac{\left|I_{n}^{(1)}\right|}{n} & =O(1) \sum_{n>\pi / t} \frac{\chi^{1}\left(1-\frac{\pi}{n \xi}\right)}{n^{2} \xi}+O(1) \sum_{n>\pi / t} \frac{\chi(1)-\chi\left(1-\frac{\pi}{n \xi}\right)}{n} \\
& =O(1)(\text { using Lemma } 9) \tag{6.9}
\end{align*}
$$

Collecting the results of (6.7), (6.8) and (6.9) we get

$$
\begin{gathered}
\sum_{2}^{*}=O\left(t^{-1}\right) \\
\text { Hence } \sum^{*}=O\left(t^{-1}\right), 0<t \leq \pi
\end{gathered}
$$

and this completes the proof of Theorem 2a.

7. Proof of Theorem 3

As $\varphi(t) \in A C(0, \pi)$, it is clear from the proof of Theorem 1 that $\sum_{n=1}^{\infty} A_{n}(u)$ is summable $\left|H, \mu_{n}\right|$ if and only if

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n}\left|\int_{0}^{1} Q_{n}(x, t) \chi^{1}(x) d x\right| \tag{7.1}
\end{equation*}
$$

is essentially bounded for $0<t \leq \pi$.
The functions $\chi^{1}(x)$ and $Q_{n}(x, t)$ are Lebesgue integrable functions of x over
$(0,1)$ for each $n \geq 1$.
Hence by an appeal to Lemma 2 for the validity of (7.1) it is necessary that $\sum_{n=1}^{\infty} \frac{\left|Q_{n}(x, t)\right|}{n}$ should be essentially bounded for $0 \leq x \leq 1$ and $0<t \leq \pi$.
Now for $N=\left[\frac{1}{T}\right]+1$ and $M=\left[t^{-2}\right]$

$$
\sum_{n=1}^{\infty} \frac{\left|Q_{n}(x, t)\right|}{n} \geq \sum_{n=N}^{M} \frac{\rho^{n}(t)|\sin n \Theta|}{n} \longrightarrow \infty \text { as } t \rightarrow 0^{+}
$$

by an appeal to Lemma 5 , for every x in $(0,1)$. This completes the proof of Theorem 3.

References

[1] Bosanquet L.S : Note on the absolute summability of a Fourier's series -J . London. Math.Soc II (1936), 11-15.
[2] Bosanquet L.S and Hyslop. J.M : On the absolute Summability of the allied Series of a Fourier Series, Math, Zeit- 42 (1937), 489-512.
[3] Bosanquet L.S and Kestelman.H : The absolute Convergence of a series of integrals, Proc. London. Math.Soc. 45 (1939) 88-97.
[4] Hardy, G.H : Divergent Series, (Oxford 1949).
[5] Hardy, G.H : Some properties of fractional integrals I, math.zeit-27 (1928) 565-606 .
[6] Hardy, G.H : Some properties of fractional integrals II , math.zeit -34 (1932) , 403-439.
[7] Hille, E and Tamarkin J.D : On the summability of Fourier series III, mathematics che-Annalen 108 (1933) 525-577.
[8] Knopp, K and Lorentz, G.G : Beitrage Zur Absoluten Limit cerung.Arch. math-2 (1949 -50) 10-16 .
[9] Kuttner,B : Some theorems on fractional derivatives proc. Lond.math.soc (3) $\underline{3}$ (1953) 480-497.
[10] Kuttner, B and Tripathy, N : An inclusion theorem for Hausdorff summability method associated with fractional integrals, Quarnt. Jour. Math Oxford series (2) $2 \underline{2}$ (1971) 299308 .
[11] Mohanty, R and Ray, B.K : On the behaviour of a series associated with the Conjugate series of a Fourier series Canadian Jour. math - $\underline{21} 1969$ (535-551).
[12] N. Tripathy: On the absolute Hausdorff summability of a fourier series. J. London. Math. Soc. 44 (1969)15-25.
[13] Ramanujan M.S : On the Hausdorff and Quasi Hausdorff methods of Summability, Quait.Jour.Math.Oxford series 8 (1957) 197-213 .
[14] Widder D.V : The Laplace transform (Princeton, 1946)152 .

