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Abstract

We study the absolute Hausdorff summability problem of Fourier’s series and

its conjugate series generalizing some known results in the literature.
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1. DEFINITION AND NOTATIONS

o)

Let Z ap be an infinite series and let {S,} be the sequence of its partial
n=0

sums. Corresponding to a given sequence {u,} of real or complex numbers ,

the sequence to sequence Hausdorff transformation is defined by [4]

ty = zn: (Z) (A”*kuk) S

1
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and the series to series Hausdorff Transformation is defined by [8]

Cp = :Lf: (Z) (A"‘kuk) kay, (n > 1)

k=1
Co = ag, where for n >0

m

Ay = (7;:) (=1 " tntr

k=0

o0
The sequence {S,} ( or the series Z ap) is said to be summable (H, ) to

. n=0
s if

lim ¢, = s
n—oo

Further if Z |Cp| < 00 (orif Y00 |ty — th—1] < 00)

n=1

oo

We say the series Z an, (or the sequence {s,}) is absolutely summable |H, p,|
n=0

or summable |H, p,|.

It is well known [4] that the necessary and sufficient condition for the method
(H, pn) to be conservative is the existence of a mass function y(z) defined over

closed interval [0, 1] such that
(1) x(z) € BV(0,1)
1
(70) pon, —/ 2"dx(z) (n=0,1,2...)
0

If further x(x) satisfies the conditions

then p(u) is called a regular moment constant, (H,u,) is called a regular
Hausdorff Transformation and y(x) is called a regular mass function.

If the mass function y(z) =1— (1 —2)% a > 0,0 <z <1 then pu, = (”za)_l
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and (H, pp,) method reduces to familiar (C, o) method [4]. On the other hand
if X
0, 0<z<+—
X(:c):{ I ﬁqu;ﬂi
where ¢ > 0, then (H, u,,) method reduces to familiar Euler or (E, ¢) method.
Let f(t) be a periodic function with period 27 and integrable in the sense of
Lebesgue over (—m, 7). We assume without loss of generality that the constant

term in the Fourier series of f(t) is zero.

We write
olt) = L (ut 1) + flu—1))
9(0) = 51+ 1) — fu-1)
Let the Fourier series of f(t) at t = u be given by

> An(u)
n=1

s
Where A, (u) = / (t) cosntdt,(n > 1) and the series conjugate to the
0

3w

Fourier series of f

—~

t) at t = u be given by
> Bu(w)
n=1

2 m
Where By, (u) = / Y(t) sinntdt, (n > 1)
T Jo

2. INTRODUCTION

Hille and Tamarkin[7] have studied the (H, u,,) summability of Fourier se-
ries and associated series by imposing direct or indirect conditions on the mass
function y(z). Concerning the absolute Hausdorff summability of Fourier se-
ries Tripathy [12] obtained a result which turned out to be equivalent to Cesaro

case. [see 10].
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Bosanquet proved the following Theorem regarding the absolute Cesaro summa-

bility of Fourier series.
Theorem A[l1] ¢(t) € BV(0,7) ZA u) € |C,al,a > 0. Further,

Bosanquet and Hyslop proved the followmg Theorem regrading the absolute

Cesaro summability of Conjugate Fourier series.

t
Theorem B[2] () € BV (0,7) and ‘”i) )= ZB yel|Cal,a>
0.

3. MAIN RESULTS

With a view to generalise Theorem A in Hausdorff summability set up, we
prove the following
Theorem 1
Let
(1) (H, py) is conservative
(ii) x(x) is absolutely continuous over (0, 1)
(iii) Xll(x) is monotonic increasing in (0, 1)
) [ @)og
Then @(t) € BV(0,7) = %, An(u) € |H, pin]-

Generalising result of Bosanquet and Hyslop (Theorem B) in Hausdorff summa-

dr < 0o
T

bility set up we prove the following.
Theorem 2 Let
(i) (H, pp) is conservative

(ii) X(x) is absolutely continuous over (0, 1)

(iii) x'(x) is monotomc increasing in (0, 1)
(iv / Ix*( ]log dx < 00
Then

(a) ¥ (t) € BV(0, )
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(b) 1/’?) e L(0,7)

o
= > Bu(u) € |H, |

n=1
Remarks (i) The conditions imposed on the mass function x(z) appears to
be stringent but Theorem 1 fails to hold if we merely assume the absolute
continuity of x(z). We prove
Theorem 3 There exists Conservative matrix (H, p,) with absolutely contin-

uous mass function y(x) and a function f(t) of the class L such that

o(t) € AC(0, 7)

but the Fourier series of f(¢) at t = w is not summable |H, p,]|.
Remarks (ii) By taking x(z) =1 - (1 —2)% 0 < a@ < 1 in Theorem 1 and

Theorem 2 we obtain respectively Theorem A and Theorem B.
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4. LEMMAS

We need the following additional notations.

Lemma 1

p? =1—4z(1 — x)sin®t/2

rsint
©=tan t —"7
1—x+ xcost

Po(x,t) = i(”) Y(1 - z)"
O <>x (1—a)
Rulx (>x (1—a)"

(2, 1) /R(;C’V

Lo(z,t) = / (. t)da

M, (x,t) = /Qn(x,t)dx

“Ycosvt

Ysin vt

Yy.sinuvt
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Proof By formal computation
P,(x,t) = p" cosn®©
Qn(x,t) = p"sinnO

n+1 :
Lo(z.t) = p sin(n +1)©  cos(n+1)0
n+1] 2tant/2 2
n+1 :
My (2.1) = — P cos(n+1)0© N sin(n 4+ 1)©
n+1| 2tant/2 2

AsO0 < p"<1,for 0 <z <1and0 <t <, the proof of the lemma follows.
Lemma 2[3] Suppose that f,(x) is measurable in (a,b) where b — a < oo for
n = 1,2,3.... Then a necessary and sufficient condition that for every A(z)
integrable (L) over (a,b) the functions f,(z)\(x) should be integrable (L) over
(a,b) and

o

D

n=1

< 0

/a b A@). fu(z)dz

is that Z | fn(x)| should be essentially bounded for z in (a,b).
n=1

Lemma 3 [14] zn: I/<Z> 2'(1 — )" = na.

v=1
Proof It is easy to verify.

Lemma 4[11] If » > 0 and A > 0, h(t) = H(t) then necessary and sufficient
conditions that

(i) h(t) should be of bounded variation in (0,7)
.y [h(®)]
i) ™

should be integrable in (0,7) are that

/t_’\|dH(t)|<oo and H(0+) = 0.
0

1 1
Lemma 5[12] For N = [J +1land M = [ﬁ]

“ nlx,t
3 |Qn (2, 1)]

n

—sooast — 0+4.
n=N
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1
1
Lemma 6 The Integral / x'(z).log 1
0

dx exists if and only if the integral

/1 Md:v exists
; )

1—=x

Proof

1—=x

:/01;; (1og1u_1x> /: xt(w)du
:/0 Xl(u){/o % (loglix> dx}du
= [t

and hence the lemma follows.

[Aoxe),,
0

du
U

Lemma7F0rn>§and0<t<7r

1—7/nt 1 o
(i)/o Pn(m,t)xl(a:)dx =0 <X(1nt)>

nt

1
(@) [ Pula. ! (@)de = O {x(1) = x(1 = n/nt)}

T nt

1—7/nt 1 x
(iii) /0 Qu(z, t)x (2)dz = O {X(lnt)}

nt

(i) f gt @, )X () de = O {x (1) — x (1 = m/nt)}
Proof of(i) We have by mean value theorem for some ¢ with 0 < { < 1 — %

1—m/nt -7
/ Pala, i) @)z = x* (1- ) / " Pz, t)de
0 I3

(1) (2 (1 1) ~ L0
o (xl(l — m/nt)

nt

> ,using Lemma 1.
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Proof of (ii) Integrating by parts and then using mean value theorem we get

1

/1_ ) tPn(:B,t).xl(iL‘)dir = [-(x(1) - X(QU))Pn(fL’at)];;:kw/nt
1

# [ ) = xa) Pl e

—7/nt
= [~ (x(1) = X(@) Pa(@, )31 e + (X(1) = x(1 = 7/nt))
/f diPn(x,t)d:U(l —m/nt <€ <1)
1—7/nt T
O(x(1) =x(I —=7/nt)) + (x(1) = x(1 — 7/nt))

{—Pn (1 _ %t) + Pn(g,t)}

=0 (X(l) - X (1 — %)) using Lemma 1

Proofs of (iii) and (iv) are respectively same as that of (i) and (ii).

Lemma 8 For 0 <t <w

1
/0 Sp(x,t).x (z)dx = O(n)

Proof We have

1 Sy (z,t)x (z)dx = /01 (/;r Rn(x’v)dv> ! (x)dz

v

_ /0 1 (i (Z) (1 — )" . /t ’ Sin@””m) a)dz
_ (1)/01 ( n (Z)x”(l — )", /;r Sinvm)dv> X (@) da
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Lemma 9 If x(z) satisfies the hypothesis of Theorem 1 (on Theorem 2) then

™

(i) ZW:O(t),O<t<7r

n>%
1-x(1-=
(ii) ZX(HM):O(l),O<t<7r
n>%

Proof of (i) Since

le(l—%) _y n+1x(1-3)

n>7% n>mw/t n n(n+1)
n+1
n

and max( ) =2 for n > 1, we have

S0,y )
n>% - n>mw/t n(n+1)

3

2t 1 - 0
77/5 X (t)dt, where 6 = D [ +1)

<
~0(t).

Proof of (ii) We have

Zx(l)—x(l—%) S/mx(l)—x(l—;)dx

n s X

o

s
n><

:/1X(1)_X(y)dy
0 I-y '

which exists by hypothesis and Lemma 6.

5. PROOF OF THEOREM 1

Integrating by parts we have
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and using it with the definition of Absolute Hausdorff summability of Fourier

series, now we obtain , by simplification

__2 [ 1 x Y(z)dx
Cu==2 [aet) [ Quiatin'@)a

oo
and by Lemma 2 the series Z |Cp| < oo if and only if

n=1

N 1
Z_;n /0 Qn(x,t)x (x)dz

= 0(1)

uniformly for 0 <t < 7.
Write

DY H /0 Qule N )

n<rm/t n>w/t
= Z + Z (say)

Since |sinvt| <wvtforallv>1and 0 <t <,
We have

2.

|Qn(z,t)| < nat (by Lemma 3)

Now by Lemma 3 and hypothesis

Z 3 /antlx 2)\da

n<7'r/t

<tz / z|x! (z)|dz

n<m/t

=0(1)

By Lemma 7 and Lemma 9

Z o) Z X! W/nt Z x(1 1—7r/nt)

n>mw/t n>m/t

= 0(1)
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Collecting the above results, we have for 0 <t < m
2 =242 =0
1 2

and this completes the proof of Theorem 1.

6. PROOF OF THEOREM 2

By Lemma 4 (taking A = 1) Theorem 2 is equivalent to Theorem 2a. Let
conditions (i), (ii), (iii) and (iv) of Theorem 2 hold. Then

H(+0) = o,/ A ()] < 00 = Y Balw) € [H, o
0 n=1

Proof of Theorem 2a Writing H(t) = t¢(t) and integrating by parts we
get

sin

By(u) = i/oﬂ H(t) t"tdt

_ /07r </t7r Sin@””m) dH (t), (n > 1) (6.1)

the integrated part vanishes as H(4+0) = 0. From the definition the series

o
Z By, (u) is summable |H, p,| if
n=1

Z]Dn\ < o0

where

n 14
v=1

Du= 13 (1)@ )0, ) (6.2

using (6.1) and (6.2) we get

D, = % OW dH(#) /f % {zn: <Z>ysm " /01 (1 — x)”—vxl(x)dx}

v=1

™ 1
_ 2 dH(t)/O Sy (z,t).x (z)dx.

™ Jo
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1 1

By Lemma 8, the integral / Sy (x,t).x* (z)dz is finite for all n > 1 and
nJo

hence by Lemma 2 for the convergence of the series Z |D,,|, it is necessary

n=1
and sufficient to show that
Z Z / Sz, )X (z)dz| = O(t™Y) (6.3)
uniformly for 0 < t < 7.
We write
Z Z+Z /Sxt dmzz+z (say)
n<i  n>m/t 1 2
By Lemma 8 Z Z / Sy (z, t)x (x)dz| = O(t™1).
n<7r/t
By mean value theorem for some £ witht <& <
1
Sn(xat)Xl
0
1 n T o
:/ <Z <n> (1 —az)" _”/ Smm}dv) X (z)dx
0 f— 14 v
:t_l{/ (T, dx—/P:Ut dx}
0
=t~! {Ifl ) — 7(12)} say (6.4)
using (i) and (ii) of Lemma 7, we get
1 1—
2 =0 (W) +O(x(1) = x(1 - 7/nt)) (6.5)

Similarly

=0 (W) +0 (X(1) —y <1 - T;)) (6.6)
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Now
Z: Z ‘/ Sp(z,t)x! (z)dx
n1Jo
2 n>m/t
— -1 |In(1)| |In(2)|
=o(t e Y, o Y (6.7)
n>m/t n>mw/t
From (6.5)
L P e L) x(1) = x(1 = /nt)
ZT_O(t )ZT+O(1)Z -
n>m/t n>m/t n>7/t
= O(1)(by Lemma 9)
Further

) o (1-7%) -
ngr:/t " - 0(1) ng;/t n2£ ! 0(1) ngr:/t "

= O(1)(using Lemma 9) (6.9)

Collecting the results of (6.7), (6.8) and (6.9) we get
> =0t
2

Hence Z =0t ™H),0<t<n
and this completes the proof of Theorem 2a.
7. PROOF OF THEOREM 3
(o.9]
As p(t) € AC(0,m), it is clear from the proof of Theorem 1 that Z Ap(u)

n=1
is summable |H, uy,| if and only if

oo 1 1 )
;n /0 Qn(z,t)x (x)dz

is essentially bounded for 0 < t < 7.

(7.1)

The functions x!(z) and Q,(x,t) are Lebesgue integrable functions of x over
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(0,1) for each n > 1.

Hence by an appeal to Lemma 2 for the validity of (7.1) it is necessary that
Z M should be essentially bounded for 0 < x <1 and 0 <t < 7.
n

n=1
Now for N = [1] + 1 and M = [t7?]
(2, 1)]
Z‘Q z, ZP Slnn@|—>ooast—>0+.

by an appeal to Lemma 5, for every z in (0,1). This completes the proof of

Theorem 3.

REFERENCES

[1] Bosanquet L.S : Note on the absolute summability of a Fourier’s series -J . London.
Math.Soc II (1936) , 11-15.

[2] Bosanquet L.S and Hyslop. J.M : On the absolute Summability of the allied Series of a
Fourier Series, Math, Zeit- 42 (1937) , 489-512 .

[3] Bosanquet L.S and Kestelman.H : The absolute Convergence of a series of integrals ,
Proc. London . Math.Soc. 45 (1939) 88-97 .

[4] Hardy, G.H : Divergent Series, (Oxford 1949).

[5] Hardy, G.H : Some properties of fractional integrals I, math.zeit-27 (1928) 565-606 .
[6] Hardy, G.H : Some properties of fractional integrals II , math.zeit -34 (1932) , 403-439.
(7]

Hille , E and Tamarkin J.D : On the summability of Fourier series III, mathematics

che-Annalen 108 (1933) 525-577 .

[8] Knopp, K and Lorentz, G.G : Beitrage Zur Absoluten Limit cerung.Arch. math-2 (1949
-50) 10-16 .

[9] Kuttner,B : Some theorems on fractional derivatives proc. Lond.math.soc (3) 3 (1953)
480-497 .

[10] Kuttner, B and Tripathy, N : An inclusion theorem for Hausdorff summability method
associated with fractional integrals, Quarnt. Jour. Math Oxford series (2) 22 (1971) 299-
308 .

[11] Mohanty, R and Ray, B.K : On the behaviour of a series associated with the Conjugate
series of a Fourier series Canadian Jour. math - 21 1969 (535 -551) .

[12] N. Tripathy: On the absolute Hausdorff summability of a fourier series. J. London.
Math . Soc. 44 (1969)15-25.

[13] Ramanujan M.S : On the Hausdorff and Quasi Hausdorff methods of Summability,
Quait.Jour.Math.Oxford series 8 (1957) 197-213 .

[14] Widder D.V : The Laplace transform (Princeton, 1946)152 .



