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We study the absolute Hausdorff summability problem of Fourier’s series and

its conjugate series generalizing some known results in the literature.
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1. Definition and Notations

Let

∞∑
n=0

an be an infinite series and let {Sn} be the sequence of its partial

sums. Corresponding to a given sequence {µn} of real or complex numbers ,

the sequence to sequence Hausdorff transformation is defined by [4]

tn =
n∑
k=0

(
n

k

)(
∆n−kµk

)
Sk

1
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and the series to series Hausdorff Transformation is defined by [8]

Cn =
1

n

n∑
k=1

(
n

k

)(
∆n−kµk

)
kak, (n ≥ 1)

C0 = a0,where for n ≥ 0

∆mµn =
m∑
k=0

(
m

k

)
(−1)kµn+k

The sequence {Sn} ( or the series

∞∑
n=0

an) is said to be summable (H,µn) to

s if

lim
n→∞

tn = s

Further if
∞∑
n=1

|Cn| <∞ (or if
∑∞

n=1 |tn − tn−1| <∞)

We say the series
∞∑
n=0

an (or the sequence {sn}) is absolutely summable |H,µn|

or summable |H,µn|.
It is well known [4] that the necessary and sufficient condition for the method

(H,µn) to be conservative is the existence of a mass function χ(x) defined over

closed interval [0, 1] such that

(i) χ(x) ∈ BV (0, 1)

(ii) µn =

∫ 1

0
xndχ(x) (n = 0, 1, 2...)

If further χ(x) satisfies the conditions

(iii) χ(0+) = χ(o) = o

(iv) χ(1) = 1

then µ(u) is called a regular moment constant, (H,µn) is called a regular

Hausdorff Transformation and χ(x) is called a regular mass function.

If the mass function χ(x) = 1− (1− x)α, α > 0, 0 ≤ x ≤ 1 then µn =
(
n+α
n

)−1
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and (H,µn) method reduces to familiar (C,α) method [4]. On the other hand

if

χ(x) =

{
0, 0 ≤ x < 1

1+q

1, 1
1+q ≤ x ≤ 1

where q > 0, then (H,µn) method reduces to familiar Euler or (E, q) method.

Let f(t) be a periodic function with period 2π and integrable in the sense of

Lebesgue over (−π, π). We assume without loss of generality that the constant

term in the Fourier series of f(t) is zero.

We write

ϕ(t) =
1

2
{f(u+ t) + f(u− t)}

ψ(t) =
1

2
{f(u+ t)− f(u− t)}

Let the Fourier series of f(t) at t = u be given by

∞∑
n=1

An(u)

Where An(u) =
2

π

∫ π

0
ϕ(t) cosntdt, (n ≥ 1) and the series conjugate to the

Fourier series of f(t) at t = u be given by

∞∑
n=1

Bn(u)

Where Bn(u) =
2

π

∫ π

0
ψ(t) sinntdt, (n ≥ 1)

2. Introduction

Hille and Tamarkin[7] have studied the (H,µn) summability of Fourier se-

ries and associated series by imposing direct or indirect conditions on the mass

function χ(x). Concerning the absolute Hausdorff summability of Fourier se-

ries Tripathy [12] obtained a result which turned out to be equivalent to Cesaro

case. [see 10].
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Bosanquet proved the following Theorem regarding the absolute Cesaro summa-

bility of Fourier series.

Theorem A[1] ϕ(t) ∈ BV (0, π) ⇒
∞∑
n=1

An(u) ∈ |C,α|, α > 0. Further,

Bosanquet and Hyslop proved the following Theorem regrading the absolute

Cesaro summability of Conjugate Fourier series.

Theorem B[2] ψ(t) ∈ BV (0, π) and
ψ(t)

t
∈ L(0, π)⇒

∞∑
n=1

Bn(u) ∈ |C,α|, α >

0.

3. Main Results

With a view to generalise Theorem A in Hausdorff summability set up, we

prove the following

Theorem 1

Let

(i) (H,µn) is conservative

(ii) χ(x) is absolutely continuous over (0, 1)

(iii) χ1(x) is monotonic increasing in (0, 1)

(iv)

∫ 1

0
|χ1(x)| log

1

1− x
dx <∞

Then ϕ(t) ∈ BV (0, π)⇒
∑∞

n=1An(u) ∈ |H,µn|.
Generalising result of Bosanquet and Hyslop (Theorem B) in Hausdorff summa-

bility set up we prove the following.

Theorem 2 Let

(i) (H,µn) is conservative

(ii) χ(x) is absolutely continuous over (0, 1)

(iii) χ1(x) is monotonic increasing in (0, 1)

(iv)

∫ 1

0
|χ1(x)| log

1

1− x
dx <∞

Then

(a) ψ(t) ∈ BV (0, π)
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(b)
ψ(t)

t
∈ L(0, π)

⇒
∞∑
n=1

Bn(u) ∈ |H,µn|

Remarks (i) The conditions imposed on the mass function χ(x) appears to

be stringent but Theorem 1 fails to hold if we merely assume the absolute

continuity of χ(x). We prove

Theorem 3 There exists Conservative matrix (H,µn) with absolutely contin-

uous mass function χ(x) and a function f(t) of the class L such that

ϕ(t) ∈ AC(0, π)

but the Fourier series of f(t) at t = u is not summable |H,µn|.
Remarks (ii) By taking χ(x) = 1 − (1 − x)α, 0 < α < 1 in Theorem 1 and

Theorem 2 we obtain respectively Theorem A and Theorem B.
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4. Lemmas

We need the following additional notations.

ρ2 = 1− 4x(1− x) sin2 t/2

Θ = tan−1
x sin t

1− x+ x cos t

Pn(x, t) =

n∑
ν=0

(
n

ν

)
xν(1− x)n−ν cos νt

Qn(x, t) =
n∑
ν=0

(
n

ν

)
xν(1− x)n−ν sin νt

Rn(x, t) =
n∑
ν=0

(
n

ν

)
xν(1− x)n−νν. sin νt

Sn(x, t) =

∫ π

t

Rn(x, ν)

ν
dν

Ln(x, t) =

∫
Pn(x, t)dx

Mn(x, t) =

∫
Qn(x, t)dx

Lemma 1

Pn(x, t) = O(1)

Qn(x, t) = O(1)

Ln(x, t) = O

(
1

nt

)
Mn(x, t) = O

(
1

nt

)
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Proof By formal computation

Pn(x, t) = ρn cosnΘ

Qn(x, t) = ρn sinnΘ

Ln(x, t) =
ρn+1

n+ 1

[
sin(n+ 1)Θ

2 tan t/2
− cos(n+ 1)Θ

2

]
Mn(x, t) = − ρ

n+1

n+ 1

[
cos(n+ 1)Θ

2 tan t/2
+

sin(n+ 1)Θ

2

]
As 0 < ρn ≤ 1, for 0 ≤ x ≤ 1 and 0 < t ≤ π, the proof of the lemma follows.

Lemma 2[3] Suppose that fn(x) is measurable in (a, b) where b− a ≤ ∞ for

n = 1, 2, 3.... Then a necessary and sufficient condition that for every λ(x)

integrable (L) over (a, b) the functions fn(x)λ(x) should be integrable (L) over

(a, b) and
∞∑
n=1

∣∣∣∣∫ b

a
λ(x).fn(x)dx

∣∣∣∣ <∞
is that

∞∑
n=1

|fn(x)| should be essentially bounded for x in (a, b).

Lemma 3 [14]
n∑
ν=1

ν

(
n

ν

)
xν(1− x)n−ν = nx.

Proof It is easy to verify.

Lemma 4[11] If η > 0 and λ > 0, tλh(t) = H(t) then necessary and sufficient

conditions that

(i) h(t) should be of bounded variation in (0, η)

(ii)
|h(t)|
t

should be integrable in (0, η) are that∫ π

0
t−λ|dH(t)| <∞ and H(0+) = 0.

Lemma 5[12] For N =

[
1

t

]
+ 1 and M =

[
1

t2

]
m∑

n=N

|Qn(x, t)|
n

−→∞ as t −→ 0 + .
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Lemma 6 The Integral

∫ 1

0
χ1(x). log

1

1− x
dx exists if and only if the integral

∫ 1

0

χ(1)− χ(x)

1− x
dx exists.

Proof ∫ 1

0

χ(1)− χ(x)

1− x
dx

=

∫ 1

0

d

dx

(
log

1

1− x

)∫ 1

x
χ1(u)du

=

∫ 1

0
χ1(u)

{∫ u

0

d

dx

(
log

1

1− x

)
dx

}
du

=

∫ 1

0
χ1(u) log

1

1− u
du

and hence the lemma follows.

Lemma 7 For n >
π

t
and 0 < t < π

(i)

∫ 1−π/nt

0
Pn(x, t)χ1(x)dx = O

(
χ1
(
1− π

nt

)
nt

)
(ii)

∫ 1

1− π
nt

Pn(x, t)χ1(x)dx = O {χ(1)− χ(1− π/nt)}

(iii)

∫ 1−π/nt

0
Qn(x, t)χ1(x)dx = O

{
χ1
(
1− π

nt

)
nt

}
(iv)
∫ 1
1−π/ntQn(x, t).χ1(x)dx = O {χ(1)− χ (1− π/nt)}

Proof of(i) We have by mean value theorem for some ζ with 0 < ζ < 1− π

nt∫ 1−π/nt

0
Pn(x, t)χ1(x)dx = χ1

(
1− π

nt

)∫ 1− π
nt

ξ
Pn(x, t)dx

= χ1
(

1− π

nt

) [
Ln

(
1− π

nt
, t
)
− Ln(ζ, t)

]
= O

(
χ1(1− π/nt)

nt

)
,using Lemma 1.
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Proof of (ii) Integrating by parts and then using mean value theorem we get∫ 1

1−π/nt
Pn(x, t).χ1(x)dx = [−(χ(1)− χ(x))Pn(x, t)]1x=1−π/nt

+

∫ 1

1−π/nt
−(χ(1)− χ(x))

d

dx
Pn(x, t)dx

= [−(χ(1)− χ(x))Pn(x, t)]1x=1−π/nt + (χ(1)− χ(1− π/nt))∫ ξ

1−π/nt

d

dx
Pn(x, t)dx(1− π/nt < ξ < 1)

= O(χ(1)− χ(1− π/nt)) + (χ(1)− χ(1− π/nt)){
−Pn

(
1− π

nt
, t
)

+ Pn(ξ, t)
}

= O
(
χ(1)− χ

(
1− π

nt

))
using Lemma 1

Proofs of (iii) and (iv) are respectively same as that of (i) and (ii).

Lemma 8 For 0 < t < π∫ 1

0
Sn(x, t).χ1(x)dx = O(n)

Proof We have∫ 1

0
Sn(x, t)χ1(x)dx =

∫ 1

0

(∫ π

t

Rn(x, v)

v
dv

)
χ1(x)dx

=

∫ 1

0

(
n∑
ν=1

(
n

ν

)
xν(1− x)n−ν .ν.

∫ π

t

sin νv

v
dv

)
χ1(x)dx

=O(1)

∫ 1

0

(
n∑
ν=1

(
n

ν

)
xν(1− x)n−ν .ν.

∫ π

t

sin νv

v
dv

)
χ1(x)dx

= O(1)

∫ 1

0

(
n∑
ν=1

(
n

ν

)
xν(1− x)n−ν .ν

)
χ1(x)dx

= O(ν)

∫ 1

0
x|χ1(x)|dx, using Lemma 3

= O(n).
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Lemma 9 If χ(x) satisfies the hypothesis of Theorem 1 (on Theorem 2) then

(i)
∑
n>π

t

χ1
(
1− π

nt

)
n2

= O(t), 0 < t < π

(ii)
∑
n>π

t

1− χ
(
1− π

nt

)
n

= O(1), 0 < t < π

Proof of (i) Since∑
n>π

t

χ1
(
1− π

nt

)
n2

=
∑
n>π/t

n+ 1

n

χ1
(
1− π

nt

)
n(n+ 1)

and max

(
n+ 1

n

)
= 2 for n ≥ 1, we have

∑
n>π

t

χ1
(
1− π

nt

)
n2

≤ 2
∑
n>π/t

χ1
(
1− π

nt

)
n(n+ 1)

=
2t

π

∞∑
n=[πt ]+1

(
1− π

nt

){(
1− π

(n+ 1)t

)
−
(

1− π

nt

)}

<
2t

π

∫ 1

δ
χ1(t)dt,where δ =

π

t
([
π
t

]
+ 1
)

=O(t).

Proof of (ii) We have∑
n>π

t

χ(1)− χ
(
1− π

nt

)
n

≤
∫ ∞
π
t

χ(1)− χ
(
1− π

tx

)
x

dx

=

∫ 1

0

χ(1)− χ(y)

1− y
dy.

which exists by hypothesis and Lemma 6.

5. Proof of Theorem 1

Integrating by parts we have

An(u) = − 2

π

∫ π

0

sinnt

n
dϕ(t), n ≥ 1.



Journal of the Orissa Mathematical Society 11

and using it with the definition of Absolute Hausdorff summability of Fourier

series, now we obtain , by simplification

Cn = − 2

π

∫ π

0
dϕ(t)

∫ 1

0
Qn(x, t).χ1(x)dx

and by Lemma 2 the series
∞∑
n=1

|Cn| <∞ if and only if

∑
=
∞∑
n=1

1

n

∣∣∣∣∫ 1

0
Qn(x, t)χ1(x)dx

∣∣∣∣ = O(1)

uniformly for 0 < t ≤ π.

Write ∑
=

 ∑
n≤π/t

+
∑
n>π/t

 1

n

∣∣∣∣∫ 1

0
Qn(x, t)χ1(x)dx

∣∣∣∣
=
∑
1

+
∑
2

(say)

Since | sin νt| ≤ νt for all ν ≥ 1 and 0 < t < π,

We have

|Qn(x, t)| ≤ nxt (by Lemma 3)

Now by Lemma 3 and hypothesis

′∑
1

≤
∑
n≤π/t

1

n

∫ 1

0
Qn(x, t)|χ1(x)|dx

≤ t
∑
n≤π/t

∫ 1

0
x|χ1(x)|dx

= O(1)

By Lemma 7 and Lemma 9∑
2

= O(t−1)
1∑

n>π/t

χ1 (1− π/nt)
n2

+O(1)
∑
n>π/t

χ(1)− χ (1− π/nt)
n

= O(1)
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Collecting the above results, we have for 0 < t < π∑
=
∑
1

+
∑
2

= O(1).

and this completes the proof of Theorem 1.

6. Proof of Theorem 2

By Lemma 4 (taking λ = 1) Theorem 2 is equivalent to Theorem 2a. Let

conditions (i), (ii), (iii) and (iv) of Theorem 2 hold. Then

H(+0) = 0,

∫ π

0
t−1|dH(t)| <∞⇒

∞∑
n=1

Bn(x) ∈ |H,µn|

Proof of Theorem 2a Writing H(t) = tψ(t) and integrating by parts we

get

Bn(u) =
2

π

∫ π

0
H(t)

sin nt

t
dt

=

∫ π

0

(∫ π

t

sinnv

v
dv

)
dH(t), (n ≥ 1) (6.1)

the integrated part vanishes as H(+0) = 0. From the definition the series
∞∑
n=1

Bn(u) is summable |H,µn| if

′∑
|Dn| <∞

where

Dn =
1

n

n∑
ν=1

(
n

ν

)
(∆n−νµν)(νBν(u)) (6.2)

using (6.1) and (6.2) we get

Dn =
2

πn

∫ π

0
dH(t)

∫ π

t

dv

v

{
n∑
ν=1

(
n

ν

)
ν sin νv

∫ 1

0
xν(1− x)n−νχ1(x)dx

}

=
2

πn

∫ π

0
dH(t)

∫ 1

0
Sn(x, t).χ1(x)dx.
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By Lemma 8, the integral
1

n

∫ 1

0
Sn(x, t).χ1(x)dx is finite for all n ≥ 1 and

hence by Lemma 2 for the convergence of the series
∞∑
n=1

|Dn|, it is necessary

and sufficient to show that

∗∑
=

∞∑
n=1

1

n

∣∣∣∣∫ 1

0
Sn(x, t)χ1(x)dx

∣∣∣∣ = O(t−1) (6.3)

uniformly for 0 < t ≤ π.

We write

∗∑
=

∑
n<π

t

+
∑
n>π/t

 1

n

∣∣∣∣∫ 1

0
Sn(x, t)χ1(x)dx

∣∣∣∣ =
∗∑
1

+
∗∑
2

(say)

By Lemma 8
∗∑
1

=
∑
n≤π/t

1

n

∣∣∣∣∫ 1

0
Sn(x, t)χ1(x)dx

∣∣∣∣ = O(t−1).

By mean value theorem for some ξ with t < ξ < π∫ 1

0
Sn(x, t)χ1(x)dx

=

∫ 1

0

(
n∑
ν=1

(
n

ν

)
xν(1− x)n−ν

∫ π

t

sin νv

v
dv

)
χ1(x)dx

=t−1
{∫ 1

0
Pn(x, ξ)χ1(x)dx−

∫ 1

0
Pn(x, t)χ1(x)dx

}
=t−1

{
I(1)n − I(2)n

}
say (6.4)

using (i) and (ii) of Lemma 7, we get

I(2)n = O

(
χ1 (1− π/nt)

nt

)
+O(χ(1)− χ(1− π/nt)) (6.5)

Similarly

I(1)n = O

(
χ1(1− π/nt)

nξ

)
+O

(
χ(1)− χ

(
1− π

nξ

))
(6.6)
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Now
∗∑
2

=
∑
n>π/t

1

n

∣∣∣∣∫ 1

0
Sn(x, t)χ1(x)dx

∣∣∣∣
= O(t−1)

 ∑
n>π/t

|In(1)|
n

+
∑
n>π/t

|In(2)|
n

 (6.7)

From (6.5)∑
n>π/t

|I(2)n |
n

= O(t−1)
∑
n>π/t

χ1
(
1− π

nt

)
n2

+O(1)
∑
n>π/t

χ(1)− χ(1− π/nt)
n

= O(1)(by Lemma 9)

Further∑
n>π/t

|I(1)n |
n

= O(1)
∑
n>π/t

χ1
(

1− π
nξ

)
n2ξ

+O(1)
∑
n>π/t

χ(1)− χ
(

1− π
nξ

)
n

= O(1)(using Lemma 9) (6.9)

Collecting the results of (6.7), (6.8) and (6.9) we get

∗∑
2

= O(t−1)

Hence
∗∑

= O(t−1), 0 < t ≤ π

and this completes the proof of Theorem 2a.

7. Proof of Theorem 3

As ϕ(t) ∈ AC(0, π), it is clear from the proof of Theorem 1 that

∞∑
n=1

An(u)

is summable |H,µn| if and only if
∞∑
n=1

1

n

∣∣∣∣∫ 1

0
Qn(x, t)χ1(x)dx

∣∣∣∣ (7.1)

is essentially bounded for 0 < t ≤ π.

The functions χ1(x) and Qn(x, t) are Lebesgue integrable functions of x over
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(0, 1) for each n ≥ 1.

Hence by an appeal to Lemma 2 for the validity of (7.1) it is necessary that
∞∑
n=1

|Qn(x, t)|
n

should be essentially bounded for 0 ≤ x ≤ 1 and 0 < t ≤ π.

Now for N =
[
1
T

]
+ 1 and M = [t−2]

∞∑
n=1

|Qn(x, t)|
n

≥
M∑
n=N

ρn(t)| sinnΘ|
n

−→∞ as t→ 0+.

by an appeal to Lemma 5, for every x in (0, 1). This completes the proof of

Theorem 3.
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