
Journal of Orissa Mathematical Society ISSN: 0975-2323
Vol. 38, No. 01-02, 2019, 53-68

Some Results for Error Function with Complex
Argument
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Abstract

In this basic research, the well-known error functions with the complex variable and some

of their properties are first introduced, then some interesting results concerning error func-

tions are presented. Finally, several conclusions and recommendations for the applications

of error functions with complex argument are pointed out..
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1 Introduction and Motivation

In the literature, from time to time, we come across the well-known error functions, which have different

independent variables (parameters or arguments). As is known, the first is the error function with the
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real variable and the second is the error function with the complex variable. These functions, which

are considered in special functions in mathematics, have important roles both in theory and in practice.

From the theory of approximation to probability theory, these functions, which have a wide range of

use and are special functions, are also encountered in many areas of technology. As certain references

relating to those functions, one may refer to the works in [7,8,12,24,31,34,40,42], for probability and

statistics, [35,13,20,34,35,41], for data analysis, [3,4,6,14,18,20,27,31,34,35,38], for heat conduction,

[5,13,14,18,20,29, 31,35,37-39], for astronomy, [1,2,5,6,9,10,14,16,19,27,29,34,35,41], for fundamental

role in asymptotic expansions, exponential asymptotics and approximation theory, and see also the others

given by the references.

In particular, since the error functions with the complex variable and their possible consequences will be

closely related to the theory of complex functions, some information and theories related to the theory

of the complex function will be very important for this scientific research. In this respect, the research

papers [11,17,21-25,33,34] given in the references will be the main source for our main results which

will mentioned in this article. Because of this relationship between the theory of complex function and

the error functions with the complex argument, we think that this research will be both a theoretical

work and an unusual research for the researchers who have been working on related scientific fields.

More particularly, as a novel work, the real and imaginary parts of the stated results will provide to the

researchers certain implications and/or suggestions for applications in some branches of science. For

such results, an interested reader is referred to [1,5,7,13-16,23,31,33,37-44]. In this novel investigation,

the well-known assertion, obtained by [32], will be used for the proofs of the main results. See also the

result in [21] for that assertion and one may check the special results in [21-26] for certain examples.
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2 Definitions and Notations

We now introduce certain definitions and notations that may be necessary for our novel results which

consist of certain inequalities and error functions in the complex plane. For those, firstly, we denote by

N , C and U

the set of natural numbers, the set of complex numbers and the unit open disk, i.e., the open set:

U=
{

z : z ∈ C and |z|< 1
}
,

respectively.

Also let A (m) be the family of the functions f (z) being analytic and m-valent in the domain U and

also consisting of the form in following Taylor-Maclaurin series:

f (z) = amzm +a1+mz1+m +a2+mz2+m + · · ·+ak+mzk+m + · · · , (2.1)

where ai ∈ C and z ∈ U, and, of course, i ∈ N and am ∈ C−{0}.

Next, we recall the special functions, which are known as the error functions with complex variable

or the complex error functions in the literature.

The error function with complex variable (parameter or argument) z is denoted by Erf(z) and also

defined by

Erf (z) =
2√
π

∫ z

0
exp
(
−ξ

2)dξ (2.2)

for an arbitrary integration path (from the point 0 to the point z (z = x+ iy) in the complex plane.

By means of the well-known Taylor-Maclaurin series expansion of the real-valued function with the

(real) variable κ:

f (κ) = exp(κ) : R= (−∞,∞)→ R+ = (0,∞)
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in the following form:

exp(κ) = 1+
κ

1!
+

κ2

2!
+ · · · + κn

n!
+ · · · , (2.3)

the second definition of the error function with complex variable Erf(z), defined by (2), is also defined

as the series expansion in the following form:

Erf(z) =
2√
π

(
z− z3

3
+

z5

10
− z7

42
+ · · ·+ (−1)nz2n+1

n!(2n+1)
+ · · ·

)
, (2.4)

where z ∈ C.

In view of the definition of the error function with complex variable z, defined by (2.2), has the comple-

mentary error function with complex variable (parameter or argument) z (or the complex complementary

error function with the variable z). It is denoted by Erfc(z) and defined by

Erfc(z) =
2√
π

∫
∞

z
exp
(
−ξ

2)dξ
(
z ∈ C

)
. (2.5)

In the light of the well-known result:

∫
∞

0
exp
(
−ξ

2)dξ =

√
π

2

and the familiar property:

∫
∞

0
exp
(
−ξ

2)dξ =
∫ z

0
exp
(
−ξ

2)dξ +
∫

∞

z
exp
(
−ξ

2)dξ ,

the well-known relation between the related error functions Erf(z) and Erfc(z), which is given by

Erf(z) =
2√
π

∫ z

0
exp
(
−ξ

2)dξ

=
2√
π

(∫
∞

0
exp
(
−ξ

2)dξ −
∫

∞

z
exp
(
−ξ

2)dξ

)
(2.6)

= 1−Erfc(z) ,

can be easily obtained, where z ∈ C.
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Moreover, with the help of the series expansion of the complex error function Erf(z), given by (2), the

second definition of the complex complementary error function with the variable z, i.e., Erfc(z), given

by the following-series expansion:

Erfc(z) = 1− 2√
π

(
z− z3

3
+

z5

10
− z7

42
+ · · ·+ (−1)nz2n+1

n!(2n+1)
+ · · ·

)
(2.7)

can be also obtained, where z ∈ C.

With a simple derivation, it is clearly seen that both the complex series in (2) and (5) are uniformly

convergent on any region of the set C. For both this and the fundamental-theoretical details of the related

complex functions, as we indicated before, one can check the books given in [11], [17], [23], [31] and

also [24] and [33].

In addition, we know that there are a number of important connections in relation with both the related

error functions and the other special functions. For the details of them, it can be looked over one should

look at the works in [5,14,15,22,23,28,30,31,34,37,38,42,43]. For the scope of this research, we think

that it will be useful to emphasize only some of the relevant special relations or results. The following

relations are easily established:

Erf (−z) =−Erf (z) , (2.8)

Erf (z) = Erf (z) , (2.9)

Erf (z) = 1−Erfc (z) , (2.10)

d
dz

(
Erf (z)

)
=

2√
π

z exp
(
− z2) , (2.11)∫

Erf (z)dz = z Erf (z) +
1√
π

exp
(
− z2) , (2.12)

√
π Erf (z) = 2 z 1F1

(
1/2;3/2;−z2) , (2.13)

and
√

π Erf (z) = Γ
(
1/2,z2) (

ℜe(z)> 0
)

(2.14)
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and
√

π Erf (z) = 2 z2 e−z2

1F1
(
1;3/2;z2) , (2.15)

where the well-known-special functions:

1F1
(
a;b;z

)
and Γ

(
a,z
)

are the confluent hypergeometric function of the first kind and incomplete gamma function, respectively.

As we said before, for more special results and also properties between the complex error functions and

also other special functions, see the references in [12,15,24,28,30,31,34,36,39, 43].

3 A Lemma and Main Results

In this section, we will present our main results pertaining to the complex error functions, as well as the

proofs of those and two lemmas, which will be used in the related proofs. We first begin by introducing

the lemmas.

Lemma 1 ([32]). Let a function w(z) be in the family A (m). If |w(z)| attains its maximum value on

the circle |z|= r < 1 at the point z0, then

z w′(z)
∣∣
z=z0

= κ w(z)
∣∣
z=z0

, (3.1)

where κ ∈ R+ with κ ≥ m.

Noting that, by taking m := 1 in the Lemma mentioned above, one obtains the well-known Jack’s

lemma (see [26]).

We now state and prove our main results dealing with the complex error function Erf (z), defined by

(2).

Theorem 1. If the complex error function Erf(z), given as in (4) (or in (2)), satisfies the inequality:

√
π

∣∣∣zErf ′ (z)+Erf (z)
∣∣∣< 4ρ , (3.2)
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then
√

π

∣∣∣Erf (z)
∣∣∣< 2ρ (3.3)

for any z in the disk U and for some ρ (ρ > 0).

Proof. By means of the complex error function Erf(z), given as in (4), we define a function w(z) by

w(z) =
√

π

2
Erf (z) (3.4)

= z− 1
3

z3 +
1
10

z5− 1
42

z7 + · · ·
(
z ∈ U

)
.

Then, it is clear that the function w(z) above is in A (1), analytic in U and w(0) = 0. It follows from (19)

that

w′(z) =
√

π

2
Erf ′ (z) (z ∈ U). (3.5)

By combining (19) and (20), the result:

w(z)+ zw′(z) =
√

π

2

(
Erf (z)+ zErf ′ (z)

)
(z ∈ U). (3.6)

is also obtained.

Suppose next that there exists a point z0 ∈ U such that

max
{∣∣w(z)∣∣ : |z| ≤ |z0|

(
z,z0 ∈ U

)}
= |w(z0)|= ρ (ρ > 0).

By applying the hypothesis above and also the assertion (16) of Lemma 1, we then find from (21) that

√
π

2

∣∣∣Erf (z)+ zErf ′ (z)
∣∣∣= ∣∣w(z0)

∣∣(1+κ
)
= ρ

(
1+κ

)
≥ 2ρ ,

which is in contradiction with the condition (17) of Theorem 1. Therefore, there is no z0 ∈ U such that

|w(z0)|= ρ. This means that |w(z)|< ρ for all z in U. So that the function, defined by (19), follows that

∣∣w(z)∣∣= ∣∣∣√π

2
Erf (z)

∣∣∣= √π

2

∣∣∣Erf (z)
∣∣∣< ρ
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for all z ∈ U and for some ρ > 0. This completes the desired proof.

Theorem 2. If the complex error function Erf (z), is defined as in (4) (or in (2)), and it satisfies the

inequality: ∣∣∣√π Erf ′ (z)−2
∣∣∣< 6ρ , (3.7)

then ∣∣∣√π Erf (z)−2z
∣∣∣< 2ρ|z| (3.8)

for some ρ (ρ > 0) and for any z ∈ U.

Proof. By the help of the complex error function Erf (z) given as in the form (4), let us define a

function w(z) in the form:

w(z) =
√

π

2
Erf (z)

z
−1 (3.9)

=−1
3

z2 +
1

10
z4− 1

42
z6 + · · ·

(
z ∈ U

)
.

Then, it is easy seen that w(z) ∈A (2) and it is analytic in U and also satisfies the condition of Lemma

1, which is w(0) = 0. In view of the steps used in the proof of Theorem 1, the proof of Theorem 2 can

be then obtained. The detail is here omitted.

Theorem 3. If the complex error function Erf (z), is given as in (4) (or in (2)) and satisfies the

inequality: ∣∣∣√π

(
zErf ′′ (z)+Erf ′ (z)

)
−2
∣∣∣< 6ρ , (3.10)

then ∣∣∣√π Erf ′ (z)−2
∣∣∣< 2ρ (3.11)

for some ρ (ρ > 0) and for any z ∈ U.
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Proof. Under favour of the complex error function Erf (z) given as in the form (4), let a function w(z)

be in the form:

w(z) =
√

π

2
Erf ′ (z)−1 (3.12)

=−z2 +
1
2

z4− 1
6

z6 + · · ·
(
z ∈ U

)
.

Then, w(z) belongs to the class ∈ A (2), is analytic in U and also satisfies the condition of Lemma 1,

w(0) = 0. In consideration of the steps used in the proof of Theorem 1, the proof of Theorem 2 can be

easy obtained. The detail is again omitted.

Theorem 4. If the complex error function Erf (z), is defined as in (4) (or in (2)) and satisfies the

inequality:

√
π

∣∣∣z2 Erf ′′ (z)−2z Erf ′ (z)+2Erf (z)
∣∣∣< 2ρ|z|2 , (3.13)

then

√
π

∣∣∣z Erf ′ (z)−Erf (z)
∣∣∣< 2ρ|z|2 (3.14)

for some ρ (ρ > 0) and for any z in U.

Proof. With the help of the complex error function Erf (z) given as in the form (4), we also define a

function w(z) in the form:

w(z) =
√

π

2

(
Erf (z)

z

)′
(3.15)

=−2
3

z+
2
5

z3− 1
7

z5 + · · ·
(
z ∈ U

)
.

Then, the function w(z) is in the class A (1), analytic in U and also satisfies the related condition of

Lemma 1, which is w(0) = 0. In the light of the steps used in the proof of Theorem 1, the proof can be

easily constituted. The detail is here omitted.
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4 Concluding Remarks

By focusing on the information concerning the complex error functions given in (7) through (15) in the

first section, using all the main results obtained in the second section and considering real or imaginary

parts of all possible results, which were obtained in the related sections, a large number of possible

implications crelating to the complex error functions can be also obtained. Some of the results may also

be useful to be considered for application in the papers in [1,2,16,19,24,27,30,40-44] for the approach

theory. We present only two instances below:

(i) By means of the well-known properties presented in (8)-(15) and considering all main results ob-

tained in the second chapter, it can redetermine several new results like all theorems (Theorems 1-4). Let

us exemplify these with two examples.

By using the property given by (10) and taking into the related theorems, one can easy obtain several

results for the complex complementary error function defined as in (7). For example, by letting

Erf(z) := 1−Erfc(z)

in the Theorem 1, the following proposition can be first revealed.

Proposition 1. For the complementary complex error function Erfc(z), given as in (7) (or in (5)), the

following implications:

√
π

∣∣∣zErfc′(z)+Erfc(z)−1
∣∣∣< 4ρ

⇒
√

π

∣∣∣Erfc(z)−1
∣∣∣< 2ρ

⇒
√

π−2ρ ≤
√

π ℜe
(

Erfc(z)
)
≤
√

π +2ρ

are satisfied for any z in U and for some ρ (ρ > 0).
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By using the property given by (13) and taking into account the related theorems, one can also obtain

several results for the confluent hypergeometric function of the first kind. For example, through the

instrumentality of the well-known property:

d
dz

(
1F1
(
α;γ;z

))
=

α

γ
1F1
(
1+α;1+ γ;z

)
(
α,γ 6= 0,−1,−2,−3, · · ·

)
and by setting

Erf (z) :=
2√
π

z 1F1
(
1/2;3/2;−z2)

in the theorem 2, the following proposition can be next revealed.

Proposition 2. For any z belonging to U and for some ρ (ρ > 0), if the following inequality:

∣∣∣3 1F1
(
1/2;3/2;−z2)+ z 1F1

(
3/2;5/2;−z2)−3

∣∣∣< 9ρ

is satisfied, then the inequality:

∣∣∣1F1
(
1/2;3/2;−z2)−1

∣∣∣< ρ
(
ρ > 0;z ∈ U

)
is satisfied.

(ii) By taking into all theorems (Theorems 1-4) and the well-known properties in the complex plane,

several corollaries can be also deduced. For instance, in view of Theorem 1 and by using the well-known

reverse triangle inequality, the following proposition can be easily presented.

Proposition 3. For the complex error function Erf(z), given as in (4) (or in (2)), the following impli-

cation:

√
π

∣∣∣|z|∣∣Erf ′(z)
∣∣− ∣∣Erf(z)

∣∣∣∣∣< 4ρ ⇒
√

π

∣∣∣Erf(z)
∣∣∣< 2ρ

holds for any z in U and for some ρ (ρ > 0).
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Finally, some possible applications of the main results and also their applications to a great number of

numerical results analysis in 2D or 3D can be determined or discussed by the researchers interested in

error functions (in the complex plane) . All possible investigations and their analyses, omitted here, are

left to the relevant researchers. For some numerical results and their implications, in particular, it will be

sufficient to take into account the computational results in the papers [1,2,36] in the references.
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