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Fuzzy Topological, Algebraic and Geometrical
Concepts

Sudarsan Nanda∗

This paper is a brief survey on fuzzy topological, algebraic and geometrical concepts.

1 Introduction

The concept of fuzzy set was introduced by Zadeh [66] in the year 1965. A fuzzy subset of a set is a

mapping µ : X→ [0,1] and an ordinary (crisp) subset is special case of fuzzy subset where µ : X→{0,1}.

µ is called membership function and we will not distinguish between a fuzzy subset and its membership

function.

This paper is a review of fuzzy topological, algebraic and geometrical concepts. Paper is divided into

three parts. Part I deals with fuzzy topology, Part II with fuzzy algebraic concepts and finally Part III

deals with some geometrical concepts.

2 Fuzzy Topological Concepts

The concepts of fuzzy set theory has been applied to fuzzy topological spaces (fts). The present author

has used this concept to introduce almost compact, strongly compact, completely connected and super-

connected fts. The purpose of the present section is to give a brief review of fts including some published

and unpublished works of the author. Let X be a nonempty set. A fuzzy topology is a family J of fuzzy

sets in X which satisfies the following conditions:
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(i) ∅,X ∈ J,

(ii) A,B ∈ J⇒ A∩B ∈ J,

(iii) Ai ∈ J for each i ∈ I⇒ ∪
i∈I

A ∈ J.

J is called a fuzzy topology for X and the pair (X ,J) is called a fuzzy topological space. Every member

of J is called an open fuzzy set. The concept of fuzzy topological spaces have been discussed by several

authors (see, for example [1], [4]-[6], [8]-[10], [12]-[22], [26, 27], [33], [38], [39], [42]-[45], [49], [55]-

[64]).

2.1 Remarks

1. Every topology on a set X is a fuzzy topology but the converse is not true since every set is fuzzy set

but not conversely.

2. The indiscrete fuzzy topology contains only ∅ and X and thus it is the same as indiscrete topology.

3. The discrete fuzzy topology on X consists of all fuzzy subsets of X .

Definition 2.1. Let (X ,J) be a fuzzy topological spaces.

(1) A fuzzy subset of X is called closed if its complement if open.

(2) Let A be a fuzzy subset of X , the largest open fuzzy set contained in A is called the interior of A and

is denoted by A◦.

(3) The smallest closed fuzzy set contained A is called the closure of A and is denoted by A.

(4) Let X and Y be ftss. A map f : X →Y is called fuzzy continuous if the inverse image of every fuzzy

open set is fuzzy open.
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2.2 Remarks

Fuzzy topologies can also be introduced through Kuratowsky closure and in particular from fuzzy neigh-

bourhood systems.

The closure map is defined to be a function a : LX → LX with the following axioms:

a(∅) =∅, a(X) = X ,

a(A)⊃ A, a(A∪B) = a(A)∪a(B),

a2(A) = a(A)

with the help of the closure map we define the interior map i : LX → LX as

i(A) = (a(Ac))c .

A fuzzy set A is said to be closed iff a(A) = A and open if i(A) = A.

If a and b are closure maps, a map f : (Xa)→ (Yb) is continuous iff

A⊂ X ⇒ f (a(A))⊂ b( f (A)) .

For fuzzy topologies it is equivalent to say that inverse image of every closed fuzzy set is closed.

Continuity etc. The following concepts have been introduced and discussed in Nanda ([39], [42]-[45]).

Let A be a fuzzy subset in a fuzzy topological space X . A is regular open if A =
(
A
)◦, and regularly

closed if A = (A◦). f : X→Y is almost continuous (see Nanda [39]) and Azad [4] if the inverse image of

every regularly open fuzzy set is open. f is almost open (afoN) iff the image of every regularly open set

is open in Y . Ganguly and Saha [16] have also introduced this concept. According to them f is almost

fuzzy open (afoG) if for each A∈ J, f−1
(
A
)
⊆ f−1(A). A is pre-open if A⊂

(
A
)◦, semi-open if A⊂ (A◦).

f : X → Y is pre-continuous if the inverse image of every open fuzzy set in Y is pre-open in X ,

semicontinuous if the inverse image of every open fuzzy set is semi-open. f is fuzzy weakly continuous
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(Azad [4]) iff for every open set B of Y , f−1(B)⊆ f−1(B). X is strongly compact if every pre-open cover

of X has a finite subcover.

We note quote the following results from [39] and [16].

Theorem 2.2. If f : X → Y is afoN and fuzzy semi-continuous, then f is afoG.

Theorem 2.3. If f : X→Y is a afoG and if the image of each fuzzy semi-closed set is fuzzy semi-closed,

then f is afoN.

Theorem 2.4. If f : X → Y is fuzzy almost continuous and afoN, then

(i) the inverse image f−1(A) of each fuzzy regular open set A of Y is a fuzzy regular open set in X,

(ii) then inverse image f−1(B) of each fuzzy regular closed set B of Y is a fuzzy regular closed set in X.

Theorem 2.5. If f : X → Y is a fuzzy almost continuous and afoG, then the inverse image f−1(A) of

each fuzzy regular open (closed) set of A of Y is fuzzy regular open (closed) in X.

Theorem 2.6. If f : X → Y is a afoG and fuzzy weakly continuous then f is almost continuous.

Let (X ,J) be a fuzzy topological spaces. Two fuzzy sets A and B in (X ,J) are said to be Q-separated

if there are closed fuzzy sets F and H such that F ⊃ A, G⊃ B, F ∩B =∅, H ∩A =∅.

A fuzzy set D in (X ,J) is called disconnected if there are nonempty fuzzy sets A and B in the subspace

(D0,JD0) such that A and B are Q-separated and A∪B = D. A fuzzy set is called connected if it is not

disconnected.

A fts (X ,J) is called locally connected at a point x ∈ X if for any fuzzy neighbourhood U of x, ∃ a

connected fuzzy neighbourhood V of x such that V ⊂U . X is said to be locally connected if it is locally

connected at every point.

X is completely connected if it is a fuzzy continuous image of some connected and locally connected

fts. X is called super-connected if every fuzzy open set is connected and X is Principal if every fuzzy

point has a smallest fuzzy neighbourhood.
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2.3 Remarks

(1.) Every connected and locally connected fts is completely connected.

(2.) Every completely connected fts is connected.

We have the following results (see Nanda [42, 43]:

Theorem 2.7. Let {Xi} be a family of completely connected fts. If ∩Xi 6= ∅, then ∪Xi completed

connected.

Theorem 2.8. Every principal superconnected fts is fuzzy path-connected.

Let D denote the set of all closed bounded intervals A =
[
A
∼
,
∼
A
]

on the real line R. For A,B ∈D define

A≤ B iff A
∼
≤ B
∼

and
∼
A≤

∼
B

D(A,B) = max
(∣∣∣A
∼
−B
∼

∣∣∣ , ∣∣∣∼A−∼B∣∣∣) .
It is easy to see that d defines a metric on D and (D,d) is a complete metric space. Also ≤ is a partial

order in D.

A fuzzy number is fuzzy subset of the real number R which is bounded, convex and normal. Let L(R)

denote the set of all fuzzy numbers which are upper semicontinuous and have compact support. In other

words, if X ∈ L(R) then for any α ∈ [0,1], Xα is compact where

Xα =

{
t : X(t)≥ α, if α ∈ (0,1],
t : X(t)≥ 0 if α = 0.

Define a map d̄ : L(R)×L(R)→ R by

d̄(X ,Y ) = sup
0≤α≤1

d (Xα ,Y α) .

For X ,Y ∈ L(R), define

X ≤ Y iff Xα ≤ Y α for any α ∈ [0,1].
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A subset E of L(R) is said to be bounded above if there exists a fuzzy number C, called an upper bound

of E, such that X ≤C for every X ∈ E. C is called least upper bound (l.u.b. or sup) of E if C is an upper

bound and is the smallest of all upper bounds. A lower bound and the greatest lower bound (g.l.b. or inf)

are defined similarly. E is said to be bounded if it is both bounded above and bounded below.

We now quote the following definition which will be needed in the sequel.

Definition 2.9. A sequence X = {Xn} of fuzzy numbers is a function X from the set N of all positive

integers into L(R). The fuzzy number Xn denotes the value of the function n ∈ N and is called the n-th

term of the sequence.

Definition 2.10. A sequence X = {Xn} of fuzzy numbers is said to be convergent to the fuzzy number

X0, written as lim
n

Xn = X0, if for every ε > 0 there exists a positive number n0 such that

d̄(Xn,X0)< ε for n > n0.

Let c denote the set of all convergent sequence of fuzzy numbers. X = {Xn} is said to be Cauchy sequence

if for every ε > 0 there exists n0 ∈ N such that

d̄(Xn,Xm)< ε for n,m > n0.

Let C denote the set of all Cauchy sequences of fuzzy numbers.

Definition 2.11. A sequence X = {Xn} of fuzzy numbers is said to be bounded if the set
{

lim
n

Xn : n ∈ N
}

of fuzzy numbers is bounded. Let m denote the set of all bounded sequences of fuzzy numbers.

It is straightforward to see that c⊂C and that c⊂ m.

It is known or can be easily seen that L(R) is a complete metric space with the metric d̄. For if
{

X i
}

is

a Cauchy sequence in L(R), then
{
(Xα)i

}
is a Cauchy sequence in D for each α , 0≤ α ≤ 1, and hence

(Xα)i = Xα . Now lim
i

X i = X and X ∈ L(R).
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We now introduce the `p-spaces ()1≤ p≤ ∞ of sequences of fuzzy numbers. We have

`p =

{
X = {Xn} : ∑

n

[
d̄(Xn,0)

]p
< ∞

}
.

We have the following result.

Theorem 2.12. c and m are complete metric spaces each with the metric ρ defined by

ρ(X ,Y ) = sup
n

d̄(Xn,Yn)

where X = {Xn} and Y = {Yn} are convergent or bounded sequences of fuzzy numbers.

Theorem 2.13. `p is a complete metric space with the metric h defined by

h(X ,Y ) =
(

∑
n

[
d̄(Xn,Yn)

]p
)1/p

where X = {Xn} and Y = {Yn} are sequences of fuzzy numbers in `p.

3 Fuzzy Algebraic Concepts

The concept of fuzzy set has been applied in algebra by various authors to develop fuzzy algebraic

concepts (see, for examples [46, 47, 2, 3, 23, 24, 25, 28, 30, 29, 31, 32, 34, 35, 37, 39, 43, 50, 65, 67].

The study of fuzzy vector spaces is warranted at the least by their potential applications. This concept

over real and complex number field was introduced in Katsaras and Liu [22]. This concept of fuzzy fields

and fuzzy vector space over fuzzy field over was introduced by Nanda [40]. Also fuzzy vector spaces

have been discussed in Malik and Mordeson [31], Lubczonok [28] and Muganda [37]. In Muganda [37]

it is shown that if A is a fuzzy subspace of V over F , then A has a basis over F . But Mordeson [34] has

shown that this result does not hold without the assumption that A has the sup property. This whether or

not A has a basis in general, still remains an open question. Also fuzzy vector spaces under triangular

norm has been discussed by Das [11]; where as t-fuzzy subfields and t-fuzzy vector spaces have been

discussed in Osman [46]. Fuzzy algebras have been considered by Nanda [43].

We first quote the definitions and then state some significant results.
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Definition 3.1. Let X be a group and G is a fuzzy set in X with membership function µG. G is called a

fuzzy group in X iff

(i) µG(xy)≥min{µG(x),µG(y)},

(ii) µG
(
x−1
)
≥ µG(x).

Definition 3.2. Let X be a ring and R is a fuzzy set in X with membership function µR. R is called a fuzzy

ring in X iff

(i) µR(x+ y)≥min{µR(x),µR(y)},

(ii) µR (−x)≥ µR(x),

(iii) µR(xy)≥min{µR(x),µR(y)}.

R is a fuzzy left (right) ideal iff

(i) µR(xy)≥ µR(y),

(ii) [µR(xy)≥ µR(x)].

Definition 3.3 (Nanda [40]). Let X be a field and F be a fuzzy subset of X with membership function µY .

F is a field iff

(i) µY (x+ y)≥min{µY (x),µY (y)},

(ii) µY (−x)≥ µY (x),

(iii) µY (xy)≥min{µY (x),µY (y)},

(iv) µY (x−1)≥ µY (x),

(v) µY (0)1,µY (1) = 0.
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Definition 3.4 (Nanda [40]). Let X be a field and F be a fuzzy subset of X with membership function µY .

Let Y be a linear space over field and V a fuzzy subset of Y with membership function µY . V is a linear

space in Y iff

(i) µY (x+ y)≥min{µY (x),µY (y)},

(ii) µY (λx)≥min{µF(λ ),µY (x)}, λ ∈ F,

(iii) µY (0) = 1.

If F is an ordinary field or in particular if F = X, then (ii) is replaced by

(ii)′ µY (λx)≥ µY (x).

Definition 3.5 (Nanda [44]). Let X be a field and F be a fuzzy field in X with membership function µF .

Let Y be an algebra over X and A a fuzzy subset of Y with membership function µA. A is called fuzzy

algebra iff

(i) µA(x+ y)≥min{µA(x),µA(y)},

(ii) µA(λx)≥min{µF(λ ),µA(x)},

(iii) µA(xy)≥min{µA(x),µA(y)}.

If F is an ordinary field or in particular if F = X, then (ii) is replaced by

(ii)′ µA(λx)≥ µA(x).

Definition 3.6 (Nanda [44]). Let X be a ring and R be a fuzzy ring in X with membership function µR.

Let Y be module over R and M a fuzzy subset of Y with membership function µM. M is called fuzzy

module iff

(i) µM(x+ y)≥min{µM(x),µM(y)},
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(ii) µM(λx)≥min{µF(λ ),µM(x)},

(iii) µM(0) = 1.

If R is an ordinary ring, then (ii) is replaced by

(ii)′ µM(λx)≥ µM(x).

Definition 3.7. A fuzzy set A is a set X, with membership function µA, is said to have sup property, if for

any subset T of X, there exists t0 ∈ T such that

µA(t0) = sup
t∈T

µA(t).

The results

Theorem 3.8. Let X and Y be fields, f a homomorphism from X into Y and F a fuzzy field in Y . Then

f−1(F) is a fuzzy field in X.

Theorem 3.9. If F is a fuzzy field in X, then f (F) need not be a fuzzy field in Y . If F has sup property,

then f (F) is a fuzzy field in Y .

Theorem 3.10. If L is a complete lattice, then the intersection of a family of fuzzy fields is a fuzzy field.

Remark 3.11. It should be noted that results similar to Theorem 1, 2 and 3 hold for fuzzy linear spaces,

fuzzy algebras, fuzzy (algebra) ideal and fuzzy modules.

Theorem 3.12. Let X = Q (the field of rational), and F any fuzzy field in X with membership function

µF . Then

µF(x) = 1 for all x ∈ X .

Theorem 3.13. Let A and B be fuzzy subspaces of a linear space V . Then A×B is a fuzzy subspace of

V ×V
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Theorem 3.14. Let B1 and B2 be fuzzy subalgebras (fuzzy ideals) of an algebra A. Then B1×B2 is a

fuzzy subalgebra (fuzzy ideal) of A×A.

Theorem 3.15. Let A and B be fuzzy subsets of a linear space V such that A×B is a fuzzy subspace of

V ×V . Then

(i) either µA(x)≤ µA(0) for all x ∈V or µB(x)≤ µB(0) for all x ∈V ;

(ii) if µA(x) ≤ µA(0) for all x ∈ V then either µA(x) ≤ µB(0) for all x ∈ V or µB(x) ≤ µB(0) for all

x ∈V ;

(iii) if µB(x) ≤ µB(0) for all x ∈ V then either µA(x) ≤ µA(0) for all x ∈ V or µB(x) ≤ µA(0) for all

x ∈V ;

(iv) either A or B is a fuzzy subspace of V ,

(v) both A or B need not be a fuzzy subspace of V .

Theorem 3.16. Similar results hold for algebras.

We also consider a similar problem for fuzzy subfields of a field F . The situation her is different since

F×F is not a field.

Theorem 3.17. Let A be a fuzzy subset of a field F.

(i) If A is a fuzzy subfield of F; then At is subfield of F for all t ∈ [0,µA(e)],

(ii) If At is a fuzzy subfield of F for all t ∈ Im(µA), then A is a fuzzy subfield of F.

Theorem 3.18. Let A be a fuzzy subset of a linear space V .

(i) If A is a fuzzy subspace of V ; then At is subspace of F for all t ∈ [0,µA(e)],

(ii) If At is a fuzzy subspace of V for all t ∈ Im(µA), then A is a fuzzy subspace of V .
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Theorem 3.19. Let B be a fuzzy subset of an algebra A.

(i) If B is a fuzzy subalgebra (fuzzy ideal) of A; then Bt is subalgebra (ideal) of A for all t ∈ [0,µB(e)],

(ii) if Bt is a fuzzy subalgebra (ideal) of A for all t ∈ Im(µB), then B is a fuzzy subalgebra (fuzzy ideal)

of A.

4 Fuzzy Geometry Concepts

In pattern recognition and image processing one often needs to measure the geometrical concepts like

the length, breadth, height, width, area, perimeter and diameter etc. of regions in images. This was

known long long ago if the region is crisply defined. But it was not known until recently how to measure

geometrical concepts if the region were fuzzy.

The height, width, diameter, perimeter and area etc. of two dimensional fuzzy sets were discussed in

Rosenfeld [51, 52], Rosenfeld and Haler [53]. Bogomolny which generalizes that “the area of a fuzzy

set is less than or equal to its height times width”.

More recently Pal and Ghosh [48] introduced some further new concepts like length, breadth, major

axis, minor axis, center of gravity, density etc. fuzzy sets.

The purpose of this paper is to establish an inequality, which in particular says that “the area of a

fuzzy set is less than or equal to its length times the breadth”. Another result is also established which

generalizes the well known fact that the perimeter is equal to π times the diameter. This sharpens the

inequality established by Mukherjee [36] because from the definitions length and breadth which are

respectively less than or equal to height and width.

Let h(µ), w(µ) and A(µ) denote respectively the height, width and area of a fuzzy set µ . These
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concepts are defined as follows (see [51, 52, 53, 54])

h(µ) =
∫

R

[max

x
µ(x,y)

]
dy,

w(µ) =
∫

R

[max

y
µ(x,y)

]
dx,

A(µ) =
∫∫

R

µ(x,y) dx dy.

More recently Pal and Ghosh [48] introduced the concepts of length and breadth. Let l(µ) and b(µ)

respectively denote the length and breadth of fuzzy set µ . Then (see [48])

l(µ) = max
x

∫
R

µ(x,y) dy,

b(µ) = max
y

∫
R

µ(x,y) dx.

Observe that

l(µ)≤ h(µ) and b(µ)≤ w(µ).

The concept of height and width was generalized by Mukherjee [36] in the following way.

For p > 0 and for a unit vector ᾱ , the ᾱ-p-width of a fuzzy set µ is given by

w
p
α
(µ) =

maxset X∫
R

µ
1
p
(
tᾱ + sb̄

)
dt, t ∈ R.

Then

hp(µ) = w
p
e2
(µ) and wp(µ) = wp

e1
(µ)

where ē(µ) = h(µ) and wp(µ) = w(µ).

Mukherjee [36] proved that

Theorem 4.1. A(µ)≤ hp(µ)wq(µ), where 1
p +

1
q = 1, p,q > 0.

This generalizes the earlier known result

A
(
µ

2)= ∫∫
R2

µ
2(x,y)dx dy≤ h(µ)w(µ).



160 Sudarsan Nanda

We now introduce the following definition.

For p > 0 and for a unit vector ᾱ , ᾱ-p-breadth of a fuzzy set µ is defined by

B
p
α
(µ) = max

x∈R

∫
R

µ
1
p
(
tᾱ + sb̄

)
dt, t ∈ R.

For the p-length and p-breadth are defined respectively by

t p = (µ) = B
p
e2
(µ) and bp(µ) = B

p
e1
(µ)

where e1 = (1,0) and e2 = (0,1).

Observe that if p = 1, then

lp(µ) = l(µ) and bp(µ) = b(µ).

In this note we prove that

Theorem 4.2.

A(µ)≤ lp(µ)bq(µ) for
1
p
+

1
q
= 1, p,q > 0.

As a special case we have

A
(
µ

2)≤ l(µ)b(µ),

Theorem 4.2 generalizes Theorem 4.1 since B p
α
(µ) ≤ w p

α
(µ). We now introduce length, breadth and

height of three dimensional fuzzy sets.

Definition 4.3.

Length l1(µ) =
∫
R

max
x

max
y

µ(x,y,z)dz

Breadth b1(µ) =
∫
R

max
z

max
x

µ(x,y,z)dy

Height h1(µ) =
∫
R

max
y

max
z

µ(x,y,z)dx
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Definition 4.4.

Length l2(µ) = max
x

∫
R

max
y

µ(x,y,z)dz

Breadth b2(µ) = max
z

∫
R

max
x

µ(x,y,z)dy

Height h2(µ) = max
y

∫
R

max
z

µ(x,y,z)dx

Definition 4.5.

Length l′2(µ) = max
y

∫
R

max
x

µ(x,y,z)dz

Breadth b′2(µ) = max
x

∫
R

max
z

µ(x,y,z)dy

Height h′2(µ) = max
z

∫
R

max
y

µ(x,y,z)dx

Definition 4.6.

Length l3(µ) = max
x

max
y

∫
R

µ(x,y,z)dz

Breadth b3(µ) = max
z

max
x

∫
R

µ(x,y,z)dy

Height h3(µ) = max
y

max
z

∫
R

µ(x,y,z)dx

It may be noted that the following inequalities hold.

l3 ≤ l2 ≤ l1, b3 ≤ b2 ≤ b1, h3 ≤ h2 ≤ h1.

If we put

Bp
ā = max

y
max

z

∫
R

µ(xā+ yb̄+ zc̄)dx,

lp
3 = Bp

ē1
, bp

3 = Bp
ē2
,hp

3 = Bp
ē3

where ē1 = (1,0,0), ē2 = (0,1,0), ē3 = (0,0,1).
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We define the volume of a fuzzy set by

V (µ) =
∫∫∫

R3

µ(x,y,z) dx dy dz.

Now we have the following

Theorem 2.

V (µ)≤ lp
3 bq

3 hr
3 where

1
p
+

1
q
+

1
r
= 1 and p,q,r > 0.
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