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Defining Trigonometric Box Spline On Type-I
Triangulation
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Abstract

In this paper, trigonometric box spline surface is defined using a subdivision scheme. The

subdivision scheme is derived using the non-stationary subdivision scheme that has been

defined in (Jena et. al., A non-stationary subdivision scheme for generalizing trigonometric

spline surfaces to arbitrary meshes, Computer Aided Geom. Design, 20, (2003), 61-77). A

convergence analysis is also given. It is found that the limit surface of the proposed non-

stationary subdivision scheme does not satisfy the convex hull property, while cos2 h times

the limit surface satisfy the convex hull property where h is the mesh size with 0 < h < π
3 .
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1 Introduction

Subdivision schemes [5, 6, 7, 8] are the schemes which are used to generate parametric curves and

surfaces from a finite set of control points in Rd(d > 1), iteratively. Initially, a control polygon or a
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control mesh is given. From this a new refined polygon or mesh is generated by applying a subdivision

algorithm once. So, by repeated application of the subdivision algorithm, a sequence of control polygons

or control meshes are obtained. In the limit, the sequence of control polygons or control meshes converge

to a smooth curve or surface for a suitably chosen subdivision rule. A subdivision scheme is called a

stationary subdivision scheme, if the subdivision rule is same at all levels of iteration. Otherwise it is

called a non-stationary subdivision scheme.

The idea of generating smooth free form surfaces from arbitrary topology by iterated mesh refinement

started in 1978 when two papers [2] and [4] appeared back to back in the same issue of Computer

Aided Design. The Doo-Sabin and Catmull-Clark algorithm represent generalizations of the subdivision

schemes for bi-quadratic and bi-cubic B-splines, respectively.

Standard CAD geometries are usually represented in terms of tensor product B-splines and their ratio-

nal version NURBS[19, 21]. Tensor product representation is cumputationally very efficient but unable

to model with complicated shapes and also in doing local mesh refinements. On the otherhand, splines

over triangulations overcome such disadvantages. Box splines are an attractive alternative which com-

bine several advantages from tensor product B-splines and splines over triangulations[1, 11]. One of

the most important advantages of box splines is that they can handle more complex domains than the

corresponding tensor product counterparts.

Trigonometric spline curves play an important role in shape designing and geometric modeling. They

were first introduced by Schoenberg [20]. The recurrence relations and the divided differences for them

were studied by Lyche and Winther [12]. Trigonometric splines can be expressed by several ways. One

way to express is by linear combination of trigonometric B-splines. Another way to study trigonomet-

ric splines is by non-stationary subdivision algorithm[7]. They are very useful since they are used to

draw circles and other conics. Like polynomial splines, they can also be generalized to multivariate

setting. Koch[9] introduced multivariate trigonometric B-splines which are found suitable for CAGD.
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Besides these very few literatures are available in this area. For example, a non-stationary subdivision

algorithm for the evaluation of trigonometric spline curves with uniform knots [7] and its generalization

to a trigonometric version of the Doo-Sabin algorithm for generating surfaces from meshes of arbitrary

topology[8].

Comparing to other mesh, triangular meshes are much more flexible to be adapted to arbitrary topol-

ogy. Furthermore, trigonometric box splines defined over type-I triangular partitions provide certain

flexibility comparing to tensor product splines as described earlier. So the main goal of our study is to

define trigonometric box spline surface using a non-stationary subdivision scheme over type-I triangula-

tion.

The main motivation for our work comes from the paper of Jena et.al.[8], where tensor product bi-

quadratic spline surfaces are constructed over arbitrary topology. It is a non-stationary subdivision

scheme and produces extraordinary vertices for type I triangulation. In our present work, after applying

the subdivision algorithm as defined in [8] to an initial control mesh of type-I triangulation, we apply

another averaging scheme to it. However in contrast to [8], after each iteration of this new scheme we

always get a regular type-I triangular mesh. Thus, we get a limit surface which is free of any extraordi-

nary points. Since box splines are free of extraordinary points, this justifies our nomenclature. Also, we

have shown that our new subdivision scheme converges and the limit surface is uniformly continuous.

Moreover, after normalization the limit surface satisfies the convex hull property.

The paper is structured as follows. In Section 2, we briefly review the nonstationary scheme defined

in [8]. Next, in Section 3, we introduce our new nonstationary subdivision scheme which generates

trigonometric box spline surfaces on an initial mesh of type-I triangulation. In Section 4, we give the

convergence of our proposed subdivision scheme. Here, it is emphasized that the convergence of our

subdivision scheme is of same order as that of [8]. Finally, we give a conclusion in Section 5.
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2 Trigonometric Spline Surface on Arbitrary Topology

In this section, we briefly review the construction of trigonometric spline surface on arbitrary topology.

First, we present the subdivision scheme[8] for an arbitrary topology. Let F 0 be the initial control mesh.

Let F0 be a face of F 0 with ordered vertices A1,A2, ...An. A set of new vertices associated with the face

F0 and the old vertices Ais are obtained by the following subdivision rule.

Subdivision Rule (R1):

ai =
P+Ei +Ei−1 +F

4
, i = 1,2, ...n (2.1)

where

P =
Ai

cos2(h/2)
, Ei =

Ai +Ai+1

2cos2(h/2)cosh
,

and

F =
1

cos2(h)cos2(h/2)
A1 + ...+An

n
,

where all the indices are taken modulo n. Here, h is the mesh size which also controls the shape of the

surface and 0 < h < π
3 . After simplification it is obtained that

ai = α(n,1)Ai +β (n,1)Ai−1 +β (n,1)Ai+1 + γ(n,1)(Ai+2 + ...Ai+n−2), (2.2)

where for k ≥ 1,

γ(n,k) =
1

4n
1

cos2(h/2k)cos2(h/2k−1)
,

β (n,k) = γ(n,k)+
1

8cos2(h/2k)cos(h/2k−1)
,

and

α(n,k) = γ(n,k)+
1

4cos2(h/2k)cos(h/2k−1)
+

1
4cos2(h/2k)

.

Applying the connectivity rule of Doo-Sabin scheme[4] to the new vertices associated with all the faces

of F 0, a new control mesh F 1 is generated. The whole subdivision process is denoted by an operator

S1, i.e., F 1 = S1F 0. Repeating this process, F 2 is generated from F 1 using the subdivision rule
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R2. In general, the kth control mesh F k is generated from F k−1 using the subdivision rule Rk, where in

the subdivision rule Rk (k > 1); α(n,1), β (n,1) and γ(n,1) are replaced by α(n,k), β (n,k) and γ(n,k),

respectively. The values α(n,k), β (n,k) and γ(n,k) are called mask associated with the rule Rk. The

subdivision process is expressed by

F k = SkF
k−1 = SkSk−1...S1F

0 = S (k)F 0. (2.3)

The connectivity rule used in [8] produces a new face of valence n from an old face of valence n;

a new face of valence n from an old interior vertex of valence n and new quadrilateral from an old

interior edge. Therefore, after each iteration number of quadrilaterals increases where the number of

non-quadrilaterals remains unchanged. After each iteration the face sizes also decrease. However, the

interior non-quadrilateral faces become surrounded by layers of quadrilaterals. As a result, the layers of

quadrilaterals converge to a tensor product bi-quadratic spline and the non-quadrilateral faces shrink to

extraordinary points.

3 Trigonometric Box Spline

In this section, we construct a new subdivision scheme that generates surfaces from the control points

lying on a mesh of a type-I triangulation. Let X0 be such a control mesh which has six triangular faces

joined as shown in Figure 1(Left). Applying the subdivision scheme as discussed in the previous section

to one of the triangular faces of X0, we get three new points(intermediate points). Since the faces are

triangular we take n = 3. For example, the face {P1,P2,P3} gives new intermediate points q1,q7 and

q8 near the vertices P1, P2 and P3 respectively. Similarly, other triangular faces also generate three

new points each. In total, we get 18 new control points (q1 to q18) which are indexed as shown in the

Figure 1(Right). Out of the eighteen points, six intermediate points q1 to q6 are associated with the

central vertex point P1, which is also a vertex of each triangular face of X0. In particular, after applying

the subdivision scheme as described in previous section, we get
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Figure 1: (Left)Initial Control mesh X0, (Right)Control mesh X0 alongwith 18 intermediate points q1 to
q18.

qi = α(3,1)P1 +β (3,1)(Pi+1 +Pi+2), i = 1,2, ...6, (P8 = P2).

The other points q7 to q18 are computed as follows:

q7 = α(3,1)P2 +β (3,1)(P3 +P1), q8 = α(3,1)P3 +β (3,1)(P1 +P2),

q9 = α(3,1)P3 +β (3,1)(P4 +P1), q10 = α(3,1)P4 +β (3,1)(P1 +P3),

q11 = α(3,1)P4 +β (3,1)(P5 +P1), q12 = α(3,1)P5 +β (3,1)(P1 +P4),

q13 = α(3,1)P5 +β (3,1)(P6 +P1), q14 = α(3,1)P6 +β (3,1)(P1 +P5),

q15 = α(3,1)P6 +β (3,1)(P7 +P1), q16 = α(3,1)P7 +β (3,1)(P1 +P6),

q17 = α(3,1)P7 +β (3,1)(P2 +P1), q18 = α(3,1)P2 +β (3,1)(P1 +P7).

where,

γ(3,1) =
1

12cos2(h/2)cos2(h)
,

β (3,1) = γ(3,1)+
1

8cos2(h/2)cos(h)
=

2+3cosh
24cos2(h/2)cos2(h)

,

α(3,1) = γ(3,1)+
1

4cos2(h/2)cos(h)
+

1
4cos2(h/2)

=
1+3cosh+3cos2(h)
12cos2(h/2)cos2(h)

.

Now, we describe our new subdivision scheme. In this scheme, we obtain the first level control points
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Q1 to Q7 as follows:

Q1 =
1
6

6

∑
i=1

qi = a1P1 +a2(P2 + ...+P7),

Q2 =
1
2(q1 +q6)+

1
2(q7 +q18)

2
= b1(P1 +P2)+b2(P7 +P3).

In similar fashion, other points are obtained as

Q3 = b1(P1 +P3)+b2(P2 +P4),Q4 = b1(P1 +P4)+b2(P3 +P5),

Q5 = b1(P1 +P5)+b2(P4 +P6),Q6 = b1(P1 +P6)+b2(P5 +P7),

Q7 = b1(P1 +P7)+b2(P6 +P2),

where, the weights are a1 =
6(1+3cosh+3cos2(h))

72cos2(h/2)cos2(h) , a2 =
2+3cosh

72cos2(h/2)cos2(h) ,

b1 =
4+9cosh+6cos2h

48cos2(h/2)cos2(h) and b2 =
2+3cosh

48cos2(h/2)cos2(h) .

Figure 2: Old control points P1 to P7 and new control points Q1 to Q7.

We categorize new control points as vertex points and edge points. The vertex points are those points

which correspond to an old vertex point(valence 6), for example Q1. Similarly, edge points are those
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points which correspond to an edge, for example Q2 to Q7. A triangular face of a control mesh contains

a vertex point and two edge points (See Figure 2).

Connectivity Rule : In a triangular face:

(i) Join vertex points to edge points.

(ii) Join edge points to edge points.

After this connectivity rule, we get a new control mesh. Below, we present our subdivision algorithm in

a traditional way.

Subdivision Algorithm:

pk+1
2i,2 j = w0(k)pk

i, j +w1(k)(pk
i+1, j + pk

i+1, j+1 + pk
i, j+1 + pk

i−1, j + pk
i−1, j−1 + pk

i, j−1),

pk+1
2i+1,2 j = w2(k)(pk

i, j + pk
i+1, j)+w3(k)(pk

i+1, j+1 + pk
i, j−1),

pk+1
2i+1,2 j+1 = w2(k)(pk

i, j + pk
i+1, j+1)+w3(k)(pk

i+1, j + pk
i, j+1),

pk+1
2i,2 j+1 = w2(k)(pk

i, j + pk
i, j+1)+w3(k)(pk

i+1, j+1 + pk
i−1, j).

Here w0(k), w1(k), w2(k) and w3(k) are the weights a1, a2, b1 and b2, respectively in which h is replaced

by h
2k (See Figure 3). Moreover, pk

i, j;(i, j) ∈ Z2,k = 0, 1, 2, . . . are the k-th level control points.

Applying this subdivision algorithm and then the connectivity rule iteratively, we get a limit surface.

Let Xk be the control mesh at k-th level and Xk+1 be the control mesh at the (k+ 1)-th level. Xk+1 is

obtained from Xk. In matrix form this subdivision scheme is written as

Xk+1 = Mk+1Xk, k = 0, 1, 2, . . . ,

where,

Xk = [pk
i, j, pk

i+1, j, pk
i+1, j+1, pk

i, j+1, pk
i−1, j, pk

i−1, j−1, pk
i, j−1]

T ,

Xk+1 = [pk+1
2i,2 j, pk+1

2i+1,2 j, pk+1
2i+1,2 j+1, pk+1

2i,2 j+1, pk+1
2i−1,2 j, pk+1

2i−1,2 j−1, pk+1
2i,2 j−1]

T ,
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Figure 3: k-th level (points represented by black dot) control mesh Xk and (k+ 1)-th level(points repre-
sented by non-filled circles) control mesh Xk+1.

and Mk+1 is the (k+1)-th level subdivision matrix which is given by

Mk+1 =



w0(k) w1(k) w1(k) w1(k) w1(k) w1(k) w1(k)
w2(k) w2(k) w3(k) 0 0 0 w3(k)
w2(k) w3(k) w2(k) w3(k) 0 0 0
w2(k) 0 w3(k) w2(k) w3(k) 0 0
w2(k) 0 0 w3(k) w2(k) w3(k) 0
w2(k) 0 0 0 w3(k) w2(k) w3(k)
w2(k) w3(k) 0 0 0 w3(k) w2(k)


7×7

. (3.1)

Trigonometric Box Spline : Let the initial control mesh Y0 be given by the Figure 4 in which p0
0,0 =

1 and rest control points have values 0. We apply the subdivision scheme (subdivision algorithm +

connectivity rule) to Y0 a number of times to get a limit surface. For example, applying the subdivision

scheme 3 times to the initial control mesh Y0 in Figure 4, we get a limit surface Y3 as shown in Figure 5.

This limit surface is called as the trigonometric box spline. We observe that this spline surface does

not lie in the convex hull of initial control mesh Y0. Note that, the sum of all entries of each row of
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Figure 4: Initial control mesh Y0 showing p0
0,0 = 1.

subdivision matrix Mk+1 is
cos2( h

2k+1 )

cos2( h
2k )

. Again, we have

cos2 h
2

cos2h
.
cos2 h

4

cos2 h
2

...
cos2( h

2k+1 )

cos2( h
2k )

=
cos2( h

2k+1 )

cos2h
,

which tends to 1
cos2h as k approaches to ∞. So cos2h times the limit surface lies in the convex hull of

initial control mesh of Y0. To show this we multiply cos2h to k-th level control mesh (See Figure 6).

Thus, we call cos2h times the limit surface as the normalized trigonometric box spline.

4 Convergence Analysis

In this section, we present the convergence analysis of our non-stationary subdivision scheme. In our

scheme

Yk+1 = Mk+1Yk,
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Figure 5: Non-normalized (top) and Normalized (bottom) Trigonometric Box Spline. Limit surface is
taken after three iterations (Y3). Here we have taken h = 1.

where Mk+1 is a 7×7 matrix termed as (k+1)-th level subdivision matrix. From this, we get

Yk+1 = Mk+1Yk = Mk+1MkYk−1

= Mk+1Mk...M1Y0 =: M(k+1)Y0.

For the study of the convergence, we need the stationary matrix M, which is obtained from Mk by putting

h = 0. Let Sk+1 := Mk+1 −M. It is observed that entries of the matrix Mk+1 are non-negetive and non-

increasing with k. The sum of all the entries in each row of Mk is cos2(h/2k)
cos2(h/2k−1)

, and each entry of Mk is

greater than the corresponding entry of M. Overall, our matrix Mk behaves identically with that of Mk in

[8]. Therefore, like Mk and M of [8] our matrices satisfy the following theorems which can be proved
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1

Figure 6: Non-normalized Trigonometric Box Spline Y3 (top) does not lie in the convex hull of Initial
control mesh Y0. Normalized Trigonometric Box Spline cos2hY3 (bottom) lies in the convex
hull of Y0. Here we have taken h = 1.

identically as in [8].

For a 7×1 column vector x the norm of x is defined as

∥x∥= max
1≤k≤7

|xk|.

Theorem 4.1. The stationary matrix M satisfies the following:

• ∥Mx∥ ≤ ∥x∥,

• ∥Mkx∥ ≤ ∥x∥ for all positive integer k.
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Theorem 4.2. The non-stationary matrices Mk, k ∈ N satisfy the following:

• ∥Mkx∥ ≤ cos2(h/2k)
cos2(h/2k−1)

∥x∥,

• ∥M(k)x∥ ≤ 1
cos2(h)∥x∥.

Theorem 4.3. ∥Sk∥ ≤ C(h)
4k ∥x∥, ∀k.

Below, we show that our subdivision scheme converges.

Theorem 4.4. The sequence of control meshes {Yk} converges to a limit surface and the limit surface is

continuous.

Proof. We consider a 7×3 column vector x and study the convergence of the sequence {M(k)x}. Without

loss of generality, we study the convergence of {M(k)x}, where x is a 7×1 column vector.

Note that

∥(M(k+1)−Mk+1)x∥ = ∥(Mk+1M(k)−MMk)x∥

= ∥((M+Sk+1)M(k)−MMk)x∥

= ∥(MM(k)−MMk +Sk+1M(k))x∥.

By triangle inequality, this implies

∥(M(k+1)−Mk+1)x∥ ≤ ∥M(M(k)−Mk)x∥+∥Sk+1M(k)x∥. (4.1)

By Theorem 4.1 to Theorem 4.3, the above equation implies

∥(M(k+1)−Mk+1)x∥ ≤ ∥(M(k)−Mk)x∥+ C(h)
4k+1 ∥x∥.(4.2)

Let εk = ∥(M(k)−Mk)x∥. Then by ( 4.2)

εk+1 ≤ εk +
C(h)
4k+1 ∥x∥,
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which implies

|εk+1 − εk| ≤
C(h)
4k+1 ∥x∥.(4.3)

Now, for m ≥ k+1

∥εm − εk∥ ≤ ∥εm − εm−1∥+∥εm−1 − εm−2∥+ ...+∥εk+1 − εk∥

≤ C(h)∥x∥( 1
4m +

1
4m+1 + ...+

1
4k+1 )

= C(h)∥x∥( 1
4m−k−1 +

1
4m−k−2 + ...+

1
4
+1)

1
4k+1

=
C(h)∥x∥

4k+1
1

1− 1
4

= C(h)∥x∥ 1
3.4k .

For given ε > 0, we can find N such that 1
4k < ε , for every k > N. Therefore,

|εm − εk| ≤
C(h)

3
∥x∥ε, whenever m, k > N. (4.4)

This implies the sequence {εk} is Cauchy in R and hence converges.

Let εk → e. Then εk = e+o(1). This implies

∥(M(k)−Mk)x∥= e+o(1).

Therefore,

(M(k)x−Mkx)→ E+Θ(1),

where E is a fixed 7×3 matrix and Θ(1)→ 0. Since {Mkx} converges, say to Y, we have

M(k)x → Y+E+ (1).

This proves the convergence of {M(k)Y0}.

The surface Y is the limit surface of stationary subdivision scheme which lies in the convex hull of Y0.

The suraface Y+E [See Figure 5(top)] is the limit surface of non-stationary subdivision scheme which
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does not lie in the convex hull of Y0 [See Figure 6(top)]. It is observed (Theorem 4.2) that ∥M(k)x∥ ≤

1
cos2(h)∥x∥. Thus, cos2(h)(Y+E) lies in the convex hull of Y0 [See Figure 6(bottom)] as explained in

section 3.

Subdivision Matrix : We can also verify the convergence of our subdivision scheme by analyzing the

subdivision matrix. Since the eigensystem of the subdivision matrix play a very important role in the

convergence analysis (cf. [16, 17]), we first study the eigensystem of the subdivision matrix. More

explicitly our subdivision matrix Mk+1, k = 0,1,2, ... (ref. 3.1) can be written in a more compact form:

Mk+1 :=

[
a B
B′ A

]
,

where a = w0(k),

B =
[

w1(k) w1(k) w1(k) w1(k) w1(k) w1(k)
]
,

B′ =
[

w2(k) w2(k) w2(k) w2(k) w2(k) w2(k)
]T

,

and A =



w2(k) w3(k) 0 0 0 w3(k)
w3(k) w2(k) w3(k) 0 0 0

0 w3(k) w2(k) w3(k) 0 0
0 0 w3(k) w2(k) w3(k) 0
0 0 0 w3(k) w2(k) w3(k)

w3(k) 0 0 0 w3(k) w2(k)


6×6

,

which is a circulant matrix of order 6× 6. Let the eigenvalues and their corresponding eigenvectors of

Mk+1 be denoted by {λi, µi} for i = 1, 2, ..., 6. Then, by direct evaluation using Mathematica 9.0, we

get:

λ1 = 1,

λ2 = λ3 = 1
2 ,

λ4 = λ5 = −5+6cosh+3cos2h
48cos4(h/2) ,

λ6 = λ7 = 1+cosh+cos2h
16cos4(h/2) .

The corresponding eigenvectors are

µ1 = (1, 1, 1, 1, 1, 1, 1)T ,
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µ2 = (0, 1, 0, −1, −1, 0, 1)T ,

µ3 = (0, −1, −1, 0, 1, 1, 0)T ,

µ4 = (0, −1, 0, 1, −1, 0, 1)T ,

µ5 = (0, −1, 1, 0, −1, 1, 0)T ,

µ6 = ( −2(2+3cosh)
7+9cosh+3cos2h , 0, 1, 0, 1, 0, 1)T ,

and µ7 = ( −2(2+3cosh)
7+9cosh+3cos2h , 1, 0, 1, 0, 1, 0)T .

So we get following eigenproperties.

Λ1

Λ2 = Λ3

Λ4 = Λ5

Λ6 = Λ7
0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 7: Figure showing the graph of eigenvalues sorted in decreasing order(top to bottom) for 0 < h <
π
3 .

1. λ1 = 1, µ1 = (1, 1, 1, 1, 1, 1, 1)T ,

|λi| < 1, i = 2, ..., 6.

2. λ2 = λ3 > 0, |λi| < λ2, ∀ i > 3.

3. λ4 = λ5 ≥ λ6 > 0, and λ6 = λ7.

4. |λ4| < 0.3, and

|λ6| < 0.2, for 0 < h < π
3 .
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Since the subdivision matrix Mk+1 satisfies the first property (see property 1), our subdivision algorithm

converges by the following theorem.

Theorem 4.5. (Convergence of a Subdivision Algorithm)(cf. [16]) Let A be a subdivision algorithm and

let its eigenvalues are sorted by modulus. If 1 = λ1 > |λ2|, then A converges.

Moreover, our subdivision scheme is uniformly continuous and C1 by the following theorem.

Theorem 4.6. If the local subdivision matrix A satisfies the first property(ref. property 1), then the limit

surface is uniformly continuous and C1( [16](Theorem 5.3 and Theorem 5.4)).

5 Conclusion

A new non-stationary subdivision scheme on type-I triangulation has been derived using the non-stationary

subdivision scheme that has been defined in [8]. The limit surface of this subdivision scheme is called

trigonometric box-spline surface. We have also studied the convergence of the proposed scheme. This

subdivision scheme is simple, effective and can be applied to geometric modeling and to construct

wavelet.
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